Skip to content
Snippets Groups Projects
Snakefile 19.1 KiB
Newer Older
#   hutspot - a DNAseq variant calling pipeline
#   Copyright (C) 2017-2019, Leiden University Medical Center
#
#   This program is free software: you can redistribute it and/or modify
#   it under the terms of the GNU Affero General Public License as published by
#   the Free Software Foundation, either version 3 of the License, or
#   (at your option) any later version.
#
#   This program is distributed in the hope that it will be useful,
#   but WITHOUT ANY WARRANTY; without even the implied warranty of
#   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
#   GNU Affero General Public License for more details.
#
#   You should have received a copy of the GNU Affero General Public License
#   along with this program.  If not, see <https://www.gnu.org/licenses/>.
"""
Main Snakefile for the pipeline.

:copyright: (c) 2017-2019 Sander Bollen
:copyright: (c) 2017-2019 Leiden University Medical Center
:license: AGPL-3.0
"""

Sander Bollen's avatar
Sander Bollen committed
import json
import jsonschema
Sander Bollen's avatar
Sander Bollen committed
from functools import partial
Sander Bollen's avatar
Sander Bollen committed
from os.path import join, basename
from pathlib import Path
import itertools
include: "common.smk"
process_config()
def get_readgroup(wildcards):
    return config["samples"][wildcards.sample]["read_groups"]
Sander Bollen's avatar
Sander Bollen committed

def get_readgroup_per_sample():
    for sample in config["samples"]:
        for rg in config["samples"][sample]["read_groups"]:
            yield rg, sample

def coverage_stats(wildcards):
    files = expand("{sample}/coverage/refFlat_coverage.tsv",
                   sample=config["samples"])
    return files if "refflat" in config else []
Sander Bollen's avatar
Sander Bollen committed

Sander Bollen's avatar
Sander Bollen committed
rule all:
    input:
        multiqc = "multiqc_report/multiqc_report.html",
        stats = "stats.json",
        stats_tsv = "stats.tsv",
        bam = expand("{s}/bams/{s}.bam", s=config["samples"]),
        vcfs = expand("{s}/vcf/{s}.vcf.gz", s=config["samples"]),
        vcf_tbi = expand("{s}/vcf/{s}.vcf.gz.tbi", s=config["samples"]),
        gvcfs = expand("{s}/vcf/{s}.g.vcf.gz", s=config["samples"]),
        gvcf_tbi = expand("{s}/vcf/{s}.g.vcf.gz.tbi", s=config["samples"]),
        coverage_stats = coverage_stats,
        coverage_files = coverage_files
Sander Bollen's avatar
Sander Bollen committed

rule create_markdup_tmp:
    """Create tmp directory for mark duplicates"""
    output: directory("tmp")
    log: "log/create_markdup_tmp.log"
    container: containers["debian"]
    shell: "mkdir -p {output} 2> {log}"
Sander Bollen's avatar
Sander Bollen committed
rule genome:
    """Create genome file as used by bedtools"""
    input: config["reference"]
Sander Bollen's avatar
Sander Bollen committed
    output: "current.genome"
    log: "log/genome.log"
    container: containers["debian"]
    shell: "awk -v OFS='\t' {{'print $1,$2'}} {input}.fai > {output} 2> {log}"
Sander Bollen's avatar
Sander Bollen committed

rule cutadapt:
    """Clip fastq files"""
Sander Bollen's avatar
Sander Bollen committed
    input:
        r1 = lambda wc: (config['samples'][wc.sample]['read_groups'][wc.read_group]['R1']),
        r2 = lambda wc: (config['samples'][wc.sample]['read_groups'][wc.read_group]['R2']),
Sander Bollen's avatar
Sander Bollen committed
    output:
        r1 = "{sample}/pre_process/{sample}-{read_group}_R1.fastq.gz",
        r2 = "{sample}/pre_process/{sample}-{read_group}_R2.fastq.gz",
    log:
        "{sample}/pre_process/{sample}-{read_group}.txt"
    container: containers["cutadapt"]
    shell: "cutadapt -a AGATCGGAAGAG -A AGATCGGAAGAG "
           "--minimum-length 1 --quality-cutoff=20,20 "
van den Berg's avatar
van den Berg committed
           "--compression-level=1 -j 8 "
           "--output {output.r1} --paired-output {output.r2} -Z "
           "{input.r1} {input.r2} "
           "--report=minimal > {log}"
Sander Bollen's avatar
Sander Bollen committed

rule align:
    """Align fastq files"""
Sander Bollen's avatar
Sander Bollen committed
    input:
        r1 = rules.cutadapt.output.r1,
        r2 = rules.cutadapt.output.r2,
        ref = config["reference"],
        tmp = ancient("tmp")
Sander Bollen's avatar
Sander Bollen committed
    params:
        rg = "@RG\\tID:{sample}-library-{read_group}\\tSM:{sample}\\tLB:library\\tPL:ILLUMINA"
    output: "{sample}/bams/{sample}-{read_group}.sorted.bam"
    log: "log/{sample}/align.{read_group}.log"
van den Berg's avatar
van den Berg committed
    container: containers["bwa-0.7.17-picard-2.22.8"]
    shell: "bwa mem -t 8 -R '{params.rg}' {input.ref} {input.r1} {input.r2} "
           "| picard -Xmx4G -Djava.io.tmpdir={input.tmp} SortSam "
           "CREATE_INDEX=TRUE TMP_DIR={input.tmp} "
           "INPUT=/dev/stdin OUTPUT={output} SORT_ORDER=coordinate 2> {log}"
Sander Bollen's avatar
Sander Bollen committed

rule markdup:
    """Mark duplicates in BAM file"""
Sander Bollen's avatar
Sander Bollen committed
    input:
        bam = sample_bamfiles,
        tmp = ancient("tmp")
Sander Bollen's avatar
Sander Bollen committed
    output:
        bam = "{sample}/bams/{sample}.bam",
        bai = "{sample}/bams/{sample}.bai",
        metrics = "{sample}/bams/{sample}.metrics"
    log: "log/{sample}/markdup.log"
        bams = lambda wc: expand('INPUT={bam}', bam=sample_bamfiles(wc))
    container: containers["picard"]
    shell: "picard -Xmx4G -Djava.io.tmpdir={input.tmp} MarkDuplicates "
           "CREATE_INDEX=TRUE TMP_DIR={input.tmp} "
           "{params.bams} OUTPUT={output.bam} "
           "METRICS_FILE={output.metrics} "
           "MAX_FILE_HANDLES_FOR_READ_ENDS_MAP=500 2> {log}"
Sander Bollen's avatar
Sander Bollen committed

Sander Bollen's avatar
Sander Bollen committed
rule baserecal:
    """Base recalibrated BAM files"""
Sander Bollen's avatar
Sander Bollen committed
    input:
        bam = sample_bamfiles,
        ref = config["reference"],
        vcfs = config["known_sites"]
    output: "{sample}/bams/{sample}.baserecal.grp"
    log: "log/{sample}/baserecal.log"
        known_sites = expand("-knownSites {vcf}", vcf=config["known_sites"]),
        region = f"-L {config['restrict_BQSR']}" if "restrict_BQSR" in config else "",
        gatk_jar = config["gatk_jar"],
        bams = lambda wc: expand("-I {bam}", bam=sample_bamfiles(wc))
    container: containers["gatk"]
    shell: "java -XX:ParallelGCThreads=1 -jar {params.gatk_jar} -T "
           "BaseRecalibrator {params.bams} -o {output} -nct 8 "
Sander Bollen's avatar
Sander Bollen committed
           "-R {input.ref} -cov ReadGroupCovariate -cov QualityScoreCovariate "
           "-cov CycleCovariate -cov ContextCovariate {params.known_sites} "
           "{params.region} 2> {log}"
Sander Bollen's avatar
Sander Bollen committed

checkpoint scatterregions:
van den Berg's avatar
van den Berg committed
    """Scatter the reference genome"""
    input:
        ref = config["reference"],
        size = config['scatter_size']
van den Berg's avatar
van den Berg committed
    output:
        directory("scatter")
    log: "log/scatterregions.log"
    container: containers["biopet-scatterregions"]
    shell: "mkdir -p {output} && "
           "biopet-scatterregions -Xmx24G "
           "--referenceFasta {input.ref} --scatterSize {params.size} "
           "--outputDir scatter 2> {log}"
van den Berg's avatar
van den Berg committed

rule gvcf_scatter:
    """Run HaplotypeCaller in GVCF mode by chunk"""
    input:
        bam = rules.markdup.output.bam,
        bqsr = rules.baserecal.output,
        dbsnp = config["dbsnp"],
        ref = config["reference"],
        region = "scatter/scatter-{chunk}.bed"
Sander Bollen's avatar
Sander Bollen committed
    output:
        gvcf = temp("{sample}/vcf/{sample}.{chunk}.g.vcf.gz"),
        gvcf_tbi = temp("{sample}/vcf/{sample}.{chunk}.g.vcf.gz.tbi")
    params:
        gatk_jar = config["gatk_jar"],
    log: "log/{sample}/gvcf_scatter.{chunk}.log"
van den Berg's avatar
van den Berg committed
    wildcard_constraints:
        chunk = "[0-9]+"
    container: containers["gatk"]
    shell: "java -jar -Xmx4G -XX:ParallelGCThreads=1 {params.gatk_jar} -T "
           "HaplotypeCaller -ERC GVCF -I "
           "{input.bam} -R {input.ref} -D {input.dbsnp} "
van den Berg's avatar
van den Berg committed
           "-L '{input.region}' -o '{output.gvcf}' "
           "-variant_index_type LINEAR -variant_index_parameter 128000 "
           "-BQSR {input.bqsr} "
           "--GVCFGQBands 20 --GVCFGQBands 40 --GVCFGQBands 60 "
           "--GVCFGQBands 80 --GVCFGQBands 100 2> {log}"
Sander Bollen's avatar
Sander Bollen committed

    """Join the gvcf files together"""
        gvcfs = gather_gvcf,
        tbis = gather_gvcf_tbi,
        gvcf = "{sample}/vcf/{sample}.g.vcf.gz",
        gvcf_tbi = "{sample}/vcf/{sample}.g.vcf.gz.tbi"
    log:
        concat = "log/{sample}/gvcf_gather_concat.log",
        index = "log/{sample}/gvcf_gather_index.log"
    container: containers["bcftools"]
    shell: "bcftools concat {input.gvcfs} --allow-overlaps "
           "--output {output.gvcf} --output-type z 2> {log.concat} && "
           "bcftools index --tbi --output-file {output.gvcf_tbi} "
           "{output.gvcf} 2> {log.index}"

rule genotype_scatter:
    """Run GATK's GenotypeGVCFs by chunk"""
Sander Bollen's avatar
Sander Bollen committed
    input:
        gvcf = rules.gvcf_scatter.output.gvcf,
        tbi = rules.gvcf_scatter.output.gvcf_tbi,
        ref= config["reference"]
    output:
        vcf = temp("{sample}/vcf/{sample}.{chunk}.vcf.gz"),
        vcf_tbi = temp("{sample}/vcf/{sample}.{chunk}.vcf.gz.tbi")
    params:
        gatk_jar = config["gatk_jar"]
    log: "log/{sample}/genotype_scatter.{chunk}.log"
van den Berg's avatar
van den Berg committed
    wildcard_constraints:
        chunk = "[0-9]+"
    container: containers["gatk"]
    shell: "java -jar -Xmx15G -XX:ParallelGCThreads=1 {params.gatk_jar} -T "
Sander Bollen's avatar
Sander Bollen committed
           "GenotypeGVCFs -R {input.ref} "
           "-V {input.gvcf} -o '{output.vcf}' 2> {log}"
rule genotype_gather:
    """Gather all genotyping VCFs"""
    input:
        vcfs = gather_vcf,
        vcfs_tbi = gather_vcf_tbi
Sander Bollen's avatar
Sander Bollen committed
    output:
        vcf = "{sample}/vcf/{sample}.vcf.gz",
        vcf_tbi = "{sample}/vcf/{sample}.vcf.gz.tbi"
    log: "log/{sample}/genotype_gather.log"
    container: containers["bcftools"]
    shell: "bcftools concat {input.vcfs} --allow-overlaps "
           "--output {output.vcf} --output-type z 2> {log} && "
           "bcftools index --tbi --output-file {output.vcf_tbi} {output.vcf}"
Sander Bollen's avatar
Sander Bollen committed

Sander Bollen's avatar
Sander Bollen committed
## bam metrics
rule mapped_reads_bases:
    """Calculate number of mapped reads"""
Sander Bollen's avatar
Sander Bollen committed
    input:
        bam = rules.markdup.output.bam,
        pywc = config["py_wordcount"]
Sander Bollen's avatar
Sander Bollen committed
    output:
        reads = "{sample}/bams/{sample}.mapped.num",
        bases = "{sample}/bams/{sample}.mapped.basenum"
    log: "log/{sample}/mapped_reads_bases.log"
    container: containers["samtools-1.7-python-3.6"]
    shell: "samtools view -F 4 {input.bam} 2> {log} | cut -f 10 | python {input.pywc} "
           "--reads {output.reads} --bases {output.bases}"
Sander Bollen's avatar
Sander Bollen committed

rule unique_reads_bases:
    """Calculate number of unique reads"""
Sander Bollen's avatar
Sander Bollen committed
    input:
        bam = rules.markdup.output.bam,
        pywc = config["py_wordcount"]
Sander Bollen's avatar
Sander Bollen committed
    output:
        reads = "{sample}/bams/{sample}.unique.num",
        bases = "{sample}/bams/{sample}.usable.basenum"
    log: "log/{sample}/unique_reads_bases.log"
    container: containers["samtools-1.7-python-3.6"]
    shell: "samtools view -F 4 -F 1024 {input.bam} 2> {log} | cut -f 10 | "
           "python {input.pywc} --reads {output.reads} "
           "--bases {output.bases} 2>> {log}"
Sander Bollen's avatar
Sander Bollen committed

## fastqc
Sander Bollen's avatar
Sander Bollen committed
rule fastqc_raw:
    """Run fastqc on raw fastq files"""
Sander Bollen's avatar
Sander Bollen committed
    input:
        r1 = lambda wc: (config['samples'][wc.sample]['read_groups'][wc.read_group]['R1']),
        r2 = lambda wc: (config['samples'][wc.sample]['read_groups'][wc.read_group]['R2']),
Sander Bollen's avatar
Sander Bollen committed
    output:
        done = "{sample}/pre_process/raw-{sample}-{read_group}/.done"
    log: "log/{sample}/fastqc_raw.{read_group}.log"
    container: containers["fastqc"]
    shell: "fastqc --threads 4 --nogroup -o $(dirname {output.done}) "
           "{input.r1} {input.r2} 2> {log} && "
           "touch {output.done}"
Sander Bollen's avatar
Sander Bollen committed

Sander Bollen's avatar
Sander Bollen committed
rule fastqc_postqc:
    """Run fastqc on fastq files post pre-processing"""
Sander Bollen's avatar
Sander Bollen committed
    input:
        r1 = rules.cutadapt.output.r1,
        r2 = rules.cutadapt.output.r2
Sander Bollen's avatar
Sander Bollen committed
    output:
        done = "{sample}/pre_process/trimmed-{sample}-{read_group}/.done"
    log: "log/{sample}/fastqc_postqc.{read_group}.log"
    container: containers["fastqc"]
    shell: "fastqc --threads 4 --nogroup -o $(dirname {output.done}) "
           "{input.r1} {input.r2} 2> {log} && "
           "touch {output.done}"
Sander Bollen's avatar
Sander Bollen committed

Sander Bollen's avatar
Sander Bollen committed
rule covstats:
    """Calculate coverage statistics on bam file"""
Sander Bollen's avatar
Sander Bollen committed
    input:
        bam = rules.markdup.output.bam,
        genome = "current.genome",
        covpy = config["covstats"],
        bed = config.get("targetsfile","")
Sander Bollen's avatar
Sander Bollen committed
    params:
        subt = "Sample {sample}"
Sander Bollen's avatar
Sander Bollen committed
    output:
        covj = "{sample}/coverage/covstats.json",
        covp = "{sample}/coverage/covstats.png"
    log:
        bedtools = "log/{sample}/covstats_bedtools.log",
        covpy = "log/{sample}/covstats_covpy.log"
    container: containers["bedtools-2.26-python-2.7"]
Sander Bollen's avatar
Sander Bollen committed
    shell: "bedtools coverage -sorted -g {input.genome} -a {input.bed} "
           "-b {input.bam} -d  2> {log.bedtools} | python {input.covpy} - "
           "--plot {output.covp} --title 'Targets coverage' "
           "--subtitle '{params.subt}' > {output.covj} 2> {log.covpy}"
Sander Bollen's avatar
Sander Bollen committed

rule vtools_coverage:
    """Calculate coverage statistics per transcript"""
    input:
        gvcf = rules.gvcf_gather.output.gvcf,
        tbi = rules.gvcf_gather.output.gvcf_tbi,
        ref = config.get('refflat', "")
    output: "{sample}/coverage/refFlat_coverage.tsv"
    log: "log/{sample}/vtools_coverage.log"
    container: containers["vtools"]
    shell: "vtools-gcoverage -I {input.gvcf} "
           "-R {input.ref} > {output} 2> {log}"
rule collect_cutadapt_summary:
    """Colect cutadapt summary from each readgroup per sample """
        cutadapt = sample_cutadapt_files,
        cutadapt_summary= config["cutadapt_summary"]
    output: "{sample}/cutadapt.json"
    log: "log/{sample}/collect_cutadapt_summary.log"
    container: containers["python3"]
    shell: "python {input.cutadapt_summary} --sample {wildcards.sample} "
           "--cutadapt-summary {input.cutadapt} > {output}"

rule collectstats:
    """Collect all stats for a particular sample"""
    input:
        mnum = rules.mapped_reads_bases.output.reads,
        mbnum = rules.mapped_reads_bases.output.bases,
        unum = rules.unique_reads_bases.output.reads,
        ubnum = rules.unique_reads_bases.output.bases,
        cov = rules.covstats.output.covj if "targetsfile" in config else [],
        cutadapt = rules.collect_cutadapt_summary.output,
        colpy = config["collect_stats"]
    params:
        fthresh = config["female_threshold"]
    output: "{sample}/{sample}.stats.json"
    log: "log/{sample}/collectstats.log"
    container: containers["python3"]
    shell: "python {input.colpy} --sample-name {wildcards.sample} "
           "--mapped-num {input.mnum} --mapped-basenum {input.mbnum} "
           "--unique-num {input.unum} --usable-basenum {input.ubnum} "
           "--female-threshold {params.fthresh} "
           "--cutadapt {input.cutadapt} "
           "--covstats {input.cov} > {output} 2> {log}"
rule multiple_metrics:
    """Run picard CollectMultipleMetrics"""
    input:
        bam = rules.markdup.output.bam,
        ref = config["reference"],
    params:
        prefix = lambda wildcards, output: output.alignment[:-26]
    output:
        alignment = "{sample}/bams/{sample}.alignment_summary_metrics",
        insertMetrics = "{sample}/bams/{sample}.insert_size_metrics"
    log: "log/{sample}/multiple_metrics.log"
    container: containers["picard"]
    shell: "picard -Xmx8G -XX:CompressedClassSpaceSize=256m CollectMultipleMetrics "
           "I={input.bam} O={params.prefix} "
           "R={input.ref} "
           "PROGRAM=CollectAlignmentSummaryMetrics "
           "PROGRAM=CollectInsertSizeMetrics 2> {log}"
rule bed_to_interval:
    """Run picard BedToIntervalList

    This is needed to convert the bed files for the capture kit to a format
    picard can read
    """
    input:
        targets = config.get("targetsfile",""),
        baits = config.get("baitsfile",""),
        ref = config["reference"]
    output:
        target_interval = "target.interval",
        baits_interval = "baits.interval"
    log:
        target = "log/bed_to_interval_target.log",
        baits = "log/bed_to_interval_target.log"
    container: containers["picard"]
    shell: "picard -Xmx4G BedToIntervalList "
            "I={input.targets} O={output.target_interval} "
            "SD={input.ref} 2> {log.target} && "
            "picard BedToIntervalList "
            "I={input.baits} O={output.baits_interval} "
            "SD={input.ref} 2> {log.baits}"

rule hs_metrics:
    """Run picard CollectHsMetrics"""
    input:
        bam = rules.markdup.output.bam,
        ref = config["reference"],
        targets = rules.bed_to_interval.output.target_interval,
        baits = rules.bed_to_interval.output.baits_interval,
    output: "{sample}/bams/{sample}.hs_metrics.txt"
    log: "log/{sample}/hs_metrics.log"
    container: containers["picard"]
    shell: "picard -Xmx8G -XX:CompressedClassSpaceSize=256m CollectHsMetrics "
           "I={input.bam} O={output} "
           "R={input.ref} "
           "BAIT_INTERVALS={input.baits} "
           "TARGET_INTERVALS={input.targets}"

Sander Bollen's avatar
Sander Bollen committed
rule multiqc:
    """
    Create multiQC report
    Depends on stats.tsv to forcefully run at end of pipeline
Sander Bollen's avatar
Sander Bollen committed
    """
    input:
        bam = expand("{sample}/bams/{sample}.bam", sample=config["samples"]),
        metric = expand("{sample}/bams/{sample}.metrics",
                        sample=config["samples"]),
        alignment_metrics = expand(
                "{sample}/bams/{sample}.alignment_summary_metrics",
                sample=config["samples"]
        ),
        insert_metrics = expand(
                "{sample}/bams/{sample}.insert_size_metrics",
                sample=config["samples"]
        ),
        fastqc_raw = (f"{sample}/pre_process/raw-{sample}-{read_group}/.done"
                      for read_group, sample in get_readgroup_per_sample()),

        fastqc_trim = (f"{sample}/pre_process/trimmed-{sample}-{read_group}/.done"
                      for read_group, sample in get_readgroup_per_sample()),

        hs_metric = expand("{sample}/bams/{sample}.hs_metrics.txt",
                           sample=config["samples"]) if "baitsfile" in config else []

    output:
        html = "multiqc_report/multiqc_report.html",
        insertSize = "multiqc_report/multiqc_data/multiqc_picard_insertSize.json",
        AlignmentMetrics = "multiqc_report/multiqc_data/multiqc_picard_AlignmentSummaryMetrics.json",
        DuplicationMetrics = "multiqc_report/multiqc_data/multiqc_picard_dups.json",
        HsMetrics = "multiqc_report/multiqc_data/multiqc_picard_HsMetrics.json" if "baitsfile" in config else []
    log: "log/multiqc.log"
    container: containers["multiqc"]
    shell: "multiqc --data-format json --force "
           "--outdir multiqc_report . 2> {log} "
           "|| touch {output}"

rule merge_stats:
    """Merge all stats of all samples"""
    input:
        cols = expand("{sample}/{sample}.stats.json",
                      sample=config['samples']),
        mpy = config["merge_stats"],
        insertSize = rules.multiqc.output.insertSize,
        AlignmentMetrics = rules.multiqc.output.AlignmentMetrics,
        DuplicationMetrics = rules.multiqc.output.DuplicationMetrics,
        HsMetrics = rules.multiqc.output.HsMetrics
    output: "stats.json"
    log: "log/stats.tsv.log"
    container: containers["vtools"]
    shell: "python {input.mpy} --collectstats {input.cols} "
           "--picard-insertSize {input.insertSize} "
           "--picard-AlignmentMetrics {input.AlignmentMetrics} "
           "--picard-DuplicationMetrics {input.DuplicationMetrics} "
           "--picard-HsMetrics {input.HsMetrics} > {output} 2> {log}"

rule stats_tsv:
    """Convert stats.json to tsv"""
    input:
        stats = rules.merge_stats.output,
        sc = config["stats_to_tsv"]
    output: "stats.tsv"
    log: "log/stats.tsv.log"
    container: containers["python3"]
    shell: "python {input.sc} -i {input.stats} > {output} 2> {log}"

rule gvcf2coverage:
    """ Determine coverage from gvcf files """
    input: rules.gvcf_gather.output.gvcf
    output: "{sample}/vcf/{sample}_{threshold}.bed"
    log: "log/{sample}/gvcf2coverage.{threshold}.log"
    container: containers["gvcf2coverage"]
    shell: "gvcf2coverage -t {wildcards.threshold} < {input} 2> {log} | cut -f 1,2,3 > {output}"