Newer
Older
Copyright (C) 2022 Leiden University Medical Center
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
#include <APqr7.h>
#include <math.h>
#include <vector>
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
/*
*********
* APqr7 *
*********
This software provides an Action Potential Cure (APqr) to correct divergent
membrane potentials in excitable biological systems. The first X action
potentials are logged when the software starts, after which AP correction
starts from the (X+1)-st AP onwards. This correction occurs with the use of
dynamic pacth-clamp currrent injection.
IN:
*) Cm Capacitance of the cell
*) V_cutoff Threshold potential for the detection of the beginning
of an AP
*) Slope_tresh Slope threshold that defines the beginning of the
AP (mV/ms)
*) BCL_cutoff Threshold value for the end of an AP, given as a
percentage of the total APD
*) lognum Number of APs that need to be logged as a reference
*) Rm Initial resistance
*) Rm_corr_up Factor to increase Rm with when necessary
*) Rm_corr_down Factor to decrease Rm with when necessary
*) noise_tresh The noise level that is allowed around the ideal value
before correcting
OUT:
*) Vout voltage that is used to inject the calculated amount
of current into the excitable system
*/
/*
createRTXIPlugin
----------------
Creation of a new RTXI Plugin
IN:
*) None
OUT:
*) RTXIPlugin
*/
extern "C" Plugin::Object *createRTXIPlugin(void)
{
return new gAPqr7();
}
/*
vars[]
----
This is not a function, but rather the construction of a list. This list contains
all the variables that are visible and/or modifiable in the GUI of the software
module. There is the choice between INPUT, OUTPUT, PARAMETER and STATE.
INPUT: connected to the input port
OUTPUT: connected to the output port
PARAMETER: modifiable variable in the code
STATE: non-modifiable variable in the code
*/
static DefaultGUIModel::variable_t vars[] = {
{ "Vm (mV)", "Membrane potential (mV)", DefaultGUIModel::INPUT, },
{ "Iout (pA)", "Output current (pA)", DefaultGUIModel::OUTPUT, },
{ "Cm (pF)", "pF", DefaultGUIModel::PARAMETER
| DefaultGUIModel::DOUBLE, },
{ "V_cutoff (mV)", "Threshold potential for the detection of the beginning of an AP, together with Slope_thresh",
DefaultGUIModel::PARAMETER | DefaultGUIModel::DOUBLE, },
{ "Slope_thresh (mV/ms)", "Slope threshold that defines the beginning of the AP (mV/ms)",
DefaultGUIModel::PARAMETER | DefaultGUIModel::DOUBLE, },
{ "BCL_cutoff (pct)", "Threshold value for the end of an AP, given as a percentage of the total APD",
DefaultGUIModel::PARAMETER | DefaultGUIModel::DOUBLE, },
{ "noise_tresh (mV)", "The noise level that is allowed before correcting", DefaultGUIModel::PARAMETER
| DefaultGUIModel::DOUBLE, },
{ "Rm (MOhm)", "MOhm", DefaultGUIModel::PARAMETER
| DefaultGUIModel::DOUBLE, },
{ "lognum", "Number of APs that need to be logged as a reference", DefaultGUIModel::PARAMETER
| DefaultGUIModel::DOUBLE, },
{ "Rm_corr_up", "To increase Rm when necessary", DefaultGUIModel::PARAMETER
| DefaultGUIModel::DOUBLE, },
{ "Rm_corr_down", "To decrease Rm when necessary", DefaultGUIModel::PARAMETER
| DefaultGUIModel::DOUBLE, },
{ "Correction (0 or 1)", "Switch Rm correction off (0) or on (1)",
DefaultGUIModel::PARAMETER | DefaultGUIModel::DOUBLE, },
{ "Period (ms)", "Period (ms)", DefaultGUIModel::STATE, }, // To check that the period taken by the algorithm is the same as the one i nthe control panel module
{ "Time (ms)", "Time (ms)", DefaultGUIModel::STATE, }, // To check that the algorithm is running
{ "APs2", "APs", DefaultGUIModel::STATE, }, // To check whether APs are being logged and the counter increases
{ "BCL2", "BCL", DefaultGUIModel::STATE, }, // To check what the eventual BCL of the ideal AP has become. You can see then if the APs were logged correctly
{ "act2", "0 or 1", DefaultGUIModel::STATE, }, // Switches from 0 to 1 and back continuously as a check to see whether you are computing error values and corrected values
variable denoting the amount of variables that is displayed in the GUI
static size_t num_vars = sizeof(vars) / sizeof(DefaultGUIModel::variable_t);
This function constructs the actual GUI by basing itself on the Default GUI Model.
It creates a module with a name, initializes the GUI, initializes the parameters,
adds a refresh, and allows you to resize.
gAPqr7::gAPqr7(void) : DefaultGUIModel("APqr7", ::vars, ::num_vars)
{
setWhatsThis(
"<p><b>APqr:</b><br>APqr7 </p>");
DefaultGUIModel::createGUI(vars, num_vars);
initParameters();
update(INIT);
refresh();
resizeMe();
}
gAPqr7::~gAPqr7(void) {}
/*
cleanup
-------
The APqr software makes use of three list structures which need cleaning after
a reset of parameters. The cleanup function takes care of this.
void gAPqr7::cleanup()
{
for(i=0;i<10000;i++){
Vm_log[i]=0;
Vm_diff_log[i]=0;
ideal_AP[i]=0;
}
}
This is the main funtcion of the code that is looped through real-time.
It contains the four main parts of the algorithm:
1) Recording the ideal AP
2) Detecting AP upstrokes
3) Computing AP correction and outputting this
4) Updating the necessary variables
IN:
*) None
OUT:
*) Vout voltage that is used to inject the calculated amount
of current into the excitable system
*/
systime = count * period; // time in milli-seconds
Vm = input(0) * 1e2; // convert 10V to mV. Divided by 10 because
// the amplifier produces 10-fold amplified
// voltages. Multiplied by 1000 to convert
// V to mV.
Vm_log[count % (int)modulo] = Vm; // Logging the measured Vm in a list
// where the modulo component makes
// sure you keep cycling when you have
// reached the maximum number in the list.
// ****************************
// ****************************
// ** Recording the ideal AP **
// ****************************
// ****************************
if(count>(int)(1/period)-1 && (Vm - Vm_log[(count-(int)(1/period)) % (int)modulo]) >= slope_thresh && APs<lognum && enter == 0 && Vm > V_cutoff)
{
// This statement is entered whenever an upstroke is detected and the amount of
// recorded APs is smaller than lognum.
// The if conditions measure the following:
// 1) Whether you are far enough in the recording such that you don't accidentaly
// start in an ongoing AP
// 2) Whether two consecutive measuring points show a large enough slope that can
// be identified with an upstroke
// 3) Whether less than lognum APs were recorded
// 4) Whether you are currently not in an action potential
// 5) Whether the mesured voltage is above a voltage treshold
BCL = (APs==-1? 0: (BCL*APs + count2)/(APs+1)); // Rolling average of the basic cycle length
log_ideal_on = 1; // Switches on logging the AP
count2 = 0; // Resets the logging counter
enter = 1; // Switches on the indicator that an AP has started
APs++; // Counts the AP upstrokes that have passed
}
if((Vm - Vm_log[(count-(int)(1/period)) % (int)modulo]) < 0 && enter == 1)
{
// This statement is entered whenever the upstroke phase of an AP is over.
// The if conditions measure the following:
// 1) Whether two consecutive measuring points show a negative slope
// 2) Whether you currently are in an ongoing AP
enter = 0; // Switches off the indicator that an AP has started
}
if(APs<lognum && log_ideal_on == 1)
{
// This statement is entered whenever logging of the AP is on
// The if conditions measure the following:
// 1) Whether less than lognum APs were recorded
// 2) Whether the AP should be logged
ideal_AP[count2] = (ideal_AP[count2]*APs + Vm)/(APs+1); // Rolling average of the AP values
count2++; // Increasing the logging counter
// ****************************
// ****************************
// ** Detecting AP upstrokes **
// ****************************
// ****************************
if (act == 0 && (Vm - Vm_log[(count-(int)(1/period)) % (int)modulo]) >= slope_thresh && APs >= lognum && Vm > V_cutoff)
{
// This statement is entered whenever an upstroke is detected after the
// ideal APs have been recorded.
// The if conditions measure the following:
// 1) Whether currently nothing is being done or corrected
// 2) Whether two consecutive measuring points show a large enough slope that can
// be identified with an upstroke
// 3) Whether lognum APs were already recorded before
// 4) Whether the mesured voltage is above a voltage treshold
count = 0; // Reset the correction counter
act = 1; // Switch the correction on
// *************************************************
// *************************************************
// ** Computing AP correction and outputting this **
// *************************************************
// *************************************************
// This statement is entered whenever the instruction to correct the AP has
// been given.
Iout = Cm * (1/Rm) * (Vm - ideal_AP[count]); // Calculate the outward going current as
// a value proportional to capacitance,
// conductivity (1/resistance), and the error
output(0) = -Iout * 2.5e-3; // This is equal to Vout
// The factor 2.5e-3 comes from the conversion between current
// and voltage that is associated to the external command
// sensitivity of the Multiclamp 700B patch-clamp amplifier,
// which is 400 pA/V to be precise
Vm_diff_log[count] = Vm - ideal_AP[count]; // Log the errors
// **************************************
// **************************************
// ** Updating the necessary variables **
// **************************************
// **************************************
if(corr == 1 && act == 1 && count > 1 && abs(Vm_diff_log[count])>noise_tresh)
{
// This statement is entered whenever an update is needed in the resistance.
// The if conditions measure the following:
// 1) Whether correction adaptation is on
// 2) Whether currently there is correction going on
// 3) whether we are not in the very first step (gives errors)
// 4) whether the current error is larger than the noise threshold
if((Vm_diff_log[count-1] / Vm_diff_log[count]) < 0)
// This statement is entered whenever two consecutive error values have
// an opposite sign. This means that an overshoot in correction occurred.
// Therefore Iout should become less, and hence Rm should be increased.
Rm = Rm * Rm_corr_up; // Increase the resistance
if(abs(Vm_diff_log[count-1]) < abs(Vm_diff_log[count]) && (Vm_diff_log[count-1] / Vm_diff_log[count]) > 0)
// This statement is entered whenever two consecutive error values have
// the same sign, and when the error values increase in value. This means
// that the error is increasing. Hence we need to correct stronger and Iout
// should increase. As a consequence the resistance Rm should be decreased.
Rm = Rm / Rm_corr_down; // Decrease the resistance
}
}
if (count > BCL_cutoff*BCL)
{
// This statement is entered whenever the end of an AP is reached.
// The if condition measures the following:
// 1) Whether the current AP is further than a chosen cutoff of the pre-determined basic cycle length
act = 0; // Stop correcting during the last phase of the AP (is RMP)
output(0) = 0; // Send a 0 output since the last output is otherwise kept
}
count++; // End of the real-time loop, adjust the counter
This function updates the parameters of the code depending on the flag that is
given to it, where each flag is associated to a button.
INIT: associated to the loading of the module
MODIFY: associated to the Modify button
PERIOD: associated to the period linker with the "system control panel" module
PAUSE: associate to the pause button when pressing on it
UNPAUSE: associated to the pause button when unpressing it
IN:
*) flag Indicating the state of the update:
INIT, MODIFY, PERIOD, PAUSE, UNPAUSE
OUT:
*) None
*/
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
void gAPqr7::update(DefaultGUIModel::update_flags_t flag)
{
switch (flag)
{
case INIT:
setParameter("Cm (pF)", Cm);
setParameter("V_cutoff (mV)", V_cutoff);
setParameter("Rm (MOhm)", Rm);
setParameter("Rm_corr_up", Rm_corr_up);
setParameter("Rm_corr_down", Rm_corr_down);
setParameter("noise_tresh (mV)", noise_tresh);
setParameter("lognum", lognum);
setParameter("BCL_cutoff (pct)", BCL_cutoff);
setParameter("Slope_thresh (mV/ms)", slope_thresh);
setParameter("Correction (0 or 1)", corr);
setState("Time (ms)", systime);
setState("Period (ms)", period);
setState("APs2", APs);
setState("BCL2", BCL);
setState("act2", act);
break;
case MODIFY:
Cm = getParameter("Cm (pF)").toDouble();
Rm = getParameter("Rm (MOhm)").toDouble();
lognum = getParameter("lognum").toDouble();
V_cutoff = getParameter("V_cutoff (mV)").toDouble();
BCL_cutoff = getParameter("BCL_cutoff (pct)").toDouble();
noise_tresh = getParameter("noise_tresh (mV)").toDouble();
Rm_corr_up = getParameter("Rm_corr_up").toDouble();
Rm_corr_down = getParameter("Rm_corr_down").toDouble();
slope_thresh = getParameter("Slope_thresh (mV/ms)").toDouble();
corr = getParameter("Correction (0 or 1)").toDouble();
systime = 0;
count = 0;
APs = -1;
BCL = 0;
log_ideal_on = 0;
enter = 0;
count2 = 0;
cleanup();
break;
case PERIOD:
period = RT::System::getInstance()->getPeriod() * 1e-6; // time in milli-seconds
modulo = (1.0/(RT::System::getInstance()->getPeriod() * 1e-6)) * 1000.0;
break;
case PAUSE:
output(0) = 0.0;
Iout = 0;
act = 0;
systime = 0;
break;
case UNPAUSE:
break;
default:
break;
}
}
/*
initParameters
--------------
This function sets all values to their defaults when no external parameters are provided
through the GUI interface.
IN:
*) None
OUT:
*) None
*/
Vm = -80; // mV
Cm = 150; // pF
Rm = 150; // MOhm
slope_thresh = 5.0; // mV
corr = 1;
output(0) = -Iout * 0.5e-3;
period = RT::System::getInstance()->getPeriod() * 1e-6; // ms
systime = 0;
count = 0;
act = 0;
Rm_corr_up=8;
Rm_corr_down=2;
BCL_cutoff = 0.98;
enter = 0;
log_ideal_on = 0;
lognum = 3;
modulo = (1.0/(RT::System::getInstance()->getPeriod() * 1e-6)) * 1000.0;
}