Skip to content
Snippets Groups Projects
Commit e76327dc authored by Tim De Coster's avatar Tim De Coster
Browse files

started commenting APqr8

parent b054e127
No related branches found
No related tags found
No related merge requests found
......@@ -229,6 +229,7 @@ void gAPqr7::execute(void)
// The if conditions measure the following:
// 1) Whether less than lognum APs were recorded
// 2) Whether the AP should be logged
ideal_AP[count2] = (ideal_AP[count2]*APs + Vm)/(APs+1); // Rolling average of the AP values
count2++; // Increasing the logging counter
}
......
......@@ -25,11 +25,63 @@
#include <math.h>
#include <vector>
/*
*********
* APqr8 *
*********
This software provides an Action Potential Cure (APqr) to correct divergent
membrane potentials in excitable biological systems. The first X action
potentials are logged when the software starts, after which AP correction
starts from the (X+1)-st AP onwards. This correction occurs with the use of
LED-controlled illumination on optogenetically modified cells.
IN:
*) Cm Capacitance of the cell
*) V_cutoff Threshold potential for the detection of the beginning
of an AP
*) Slope_tresh Slope threshold that defines the beginning of the
AP (mV/ms)
*) BCL_cutoff Threshold value for the end of an AP, given as a
percentage of the total APD
*) lognum Number of APs that need to be logged as a reference
*) Rm Initial resistance
*) Rm_corr_up Factor to increase Rm with when necessary
*) Rm_corr_down Factor to decrease Rm with when necessary
*) noise_tresh The noise level that is allowed around the ideal value
before correcting
OUT:
*) Vout voltage that is used to inject the calculated amount
of current into the excitable system
*/
/*
createRTXIPlugin
----------------
Creation of a new RTXI Plugin
IN:
*) None
OUT:
*) RTXIPlugin
*/
extern "C" Plugin::Object *createRTXIPlugin(void)
{
return new gAPqr8();
}
/*
vars[]
----
This is not a function, but rather the construction of a list. This list contains
all the variables that are visible and/or modifiable in the GUI of the software
module. There is the choice between INPUT, OUTPUT, PARAMETER and STATE.
INPUT: connected to the input port
OUTPUT: connected to the output port
PARAMETER: modifiable variable in the code
STATE: non-modifiable variable in the code
*/
static DefaultGUIModel::variable_t vars[] = {
{ "Vm (mV)", "Membrane potential (mV)", DefaultGUIModel::INPUT, },
{ "Iout (pA)", "Output current (pA)", DefaultGUIModel::OUTPUT, },
......@@ -68,8 +120,25 @@ static DefaultGUIModel::variable_t vars[] = {
{ "modulo_state", "number", DefaultGUIModel::STATE, },
};
/*
num_vars
--------
variable denoting the amount of variables that is displayed in the GUI
*/
static size_t num_vars = sizeof(vars) / sizeof(DefaultGUIModel::variable_t);
/*
gAPqr8
------
This function constructs the actual GUI by basing itself on the Default GUI Model.
It creates a module with a name, initializes the GUI, initializes the parameters,
adds a refresh, and allows you to resize.
IN:
*) None
OUT:
*) None
*/
gAPqr8::gAPqr8(void) : DefaultGUIModel("APqr8", ::vars, ::num_vars)
{
setWhatsThis(
......@@ -81,54 +150,128 @@ gAPqr8::gAPqr8(void) : DefaultGUIModel("APqr8", ::vars, ::num_vars)
resizeMe();
}
gAPqr8::~gAPqr8(void)
{
}
gAPqr8::~gAPqr8(void){}
/*
cleanup
-------
The APqr software makes use of three list structures which need cleaning after
a reset of parameters. The cleanup function takes care of this.
IN:
*) None
OUT:
*) None
*/
void gAPqr8::cleanup()
{
for(i=0;i<10000;i++){
Vm_log[i]=0;
Vm_diff_log[i]=0;
ideal_AP[i]=0;
}
}
/*
execute
-------
This is the main funtcion of the code that is looped through real-time.
It contains the four main parts of the algorithm:
1) Recording the ideal AP
2) Detecting AP upstrokes
3) Computing AP correction and outputting this
4) Updating the necessary variables
IN:
*) None
OUT:
*) Vout voltage that is used to inject the calculated amount
of current into the excitable system
*/
void gAPqr8::execute(void)
{
systime = count * period; // time in milli-seconds
Vm = input(0) * 1e2; // convert 10V to mV. Divided by 10 because the amplifier produces 10-fold amplified voltages. Multiplied by 1000 to convert V to mV.
systime = count * period; // time in milli-seconds
Vm = input(0) * 1e2; // convert 10V to mV. Divided by 10 because
// the amplifier produces 10-fold amplified
// voltages. Multiplied by 1000 to convert
// V to mV.
Vm_log[count % (int)modulo] = Vm;
Vm_log[count % (int)modulo] = Vm; // Logging the measured Vm in a list
// where the modulo component makes
// sure you keep cycling when you have
// reached the maximum number in the list.
// ****************************
// ****************************
// ** Recording the ideal AP **
// ****************************
// ****************************
if(count>(int)(1/period)-1 && (Vm - Vm_log[(count-(int)(1/period)) % (int)modulo]) >= slope_thresh && APs<lognum && enter == 0 && Vm > V_cutoff)
{
BCL = (APs==-1? 0: (BCL*APs + count2)/(APs+1));
log_ideal_on = 1;
count2 = 0;
enter = 1;
APs++;
// This statement is entered whenever an upstroke is detected and the amount of
// recorded APs is smaller than lognum.
// The if conditions measure the following:
// 1) Whether you are far enough in the recording such that you don't accidentaly
// start in an ongoing AP
// 2) Whether two consecutive measuring points show a large enough slope that can
// be identified with an upstroke
// 3) Whether less than lognum APs were recorded
// 4) Whether you are currently not in an action potential
// 5) Whether the mesured voltage is above a voltage treshold
BCL = (APs==-1? 0: (BCL*APs + count2)/(APs+1)); // Rolling average of the basic cycle length
log_ideal_on = 1; // Switches on logging the AP
count2 = 0; // Resets the logging counter
enter = 1; // Switches on the indicator that an AP has started
APs++; // Counts the AP upstrokes that have passed
}
if((Vm - Vm_log[(count-(int)(1/period)) % (int)modulo]) < 0 && enter == 1)
{
enter = 0;
// This statement is entered whenever the upstroke phase of an AP is over.
// The if conditions measure the following:
// 1) Whether two consecutive measuring points show a negative slope
// 2) Whether you currently are in an ongoing AP
enter = 0; // Switches off the indicator that an AP has started
}
if(APs<lognum && log_ideal_on == 1)
{
ideal_AP[count2] = (ideal_AP[count2]*APs + Vm)/(APs+1);
count2++;
// This statement is entered whenever logging of the AP is on
// The if conditions measure the following:
// 1) Whether less than lognum APs were recorded
// 2) Whether the AP should be logged
ideal_AP[count2] = (ideal_AP[count2]*APs + Vm)/(APs+1); // Rolling average of the AP values
count2++; // Increasing the logging counter
}
// ****************************
// ****************************
// ** Detecting AP upstrokes **
// ****************************
// ****************************
if (act == 0 && (Vm - Vm_log[(count-(int)(1/period)) % (int)modulo]) >= slope_thresh && APs >= lognum && Vm > V_cutoff)
{
count = 0;
act = 1;
// This statement is entered whenever an upstroke is detected after the
// ideal APs have been recorded.
// The if conditions measure the following:
// 1) Whether currently nothing is being done or corrected
// 2) Whether two consecutive measuring points show a large enough slope that can
// be identified with an upstroke
// 3) Whether lognum APs were already recorded before
// 4) Whether the mesured voltage is above a voltage treshold
count = 0; // Reset the correction counter
act = 1; // Switch the correction on
}
// *************************************************
// *************************************************
// ** Computing AP correction and outputting this **
// *************************************************
// *************************************************
if (act == 1)
{
Iout = Cm * (1/Rm) * (Vm - ideal_AP[count]);
......@@ -168,6 +311,23 @@ void gAPqr8::execute(void)
}
/*
Update
------
This function updates the parameters of the code depending on the flag that is
given to it, where each flag is associated to a button.
INIT: associated to the loading of the module
MODIFY: associated to the Modify button
PERIOD: associated to the period linker with the "system control panel" module
PAUSE: associate to the pause button when pressing on it
UNPAUSE: associated to the pause button when unpressing it
IN:
*) flag Indicating the state of the update:
INIT, MODIFY, PERIOD, PAUSE, UNPAUSE
OUT:
*) None
*/
void gAPqr8::update(DefaultGUIModel::update_flags_t flag)
{
switch (flag)
......@@ -234,6 +394,17 @@ void gAPqr8::update(DefaultGUIModel::update_flags_t flag)
}
}
/*
initParameters
--------------
This function sets all values to their defaults when no external parameters are provided
through the GUI interface.
IN:
*) None
OUT:
*) None
*/
void gAPqr8::initParameters()
{
Vm = -80; // mV
......
......@@ -21,6 +21,7 @@
#include <string>
#include <vector>
// All parameters and functions related to the gAPqr8 class.
class gAPqr8 : public DefaultGUIModel
{
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment