Skip to content
Snippets Groups Projects

Compare revisions

Changes are shown as if the source revision was being merged into the target revision. Learn more about comparing revisions.

Source

Select target project
No results found

Target

Select target project
  • courses/programming-course-assignments
  • y.sun/course-assignments
  • h.buermans/course-assignments
  • z.tatum/course-assignments
  • p.a.c._t_hoen/course-assignments
  • b.balliu/course-assignments
  • r.h.de_leeuw/course-assignments
  • l.khachatryan/course-assignments
  • viktoriaeriksson/course-assignments
  • marcvandriel/course-assignments
  • b.a.s.kurreeman/course-assignments
  • k.j.van_der_gaag/course-assignments
  • tabalan/programming-course-assignments
  • rubendries/programming-course-assignments
  • pholland/programming-course-assignments
  • eavila/programming-course-assignments
  • tjhulst/programming-course-assignments
  • m.vermaat.hg/programming-course-assignments
  • fsleutels/programming-course-assignments
  • prao/programming-course-assignments
  • rpbeuk/programming-course-assignments
  • arhouweling/programming-course-assignments
  • i.pulyakhina/programming-course-assignments
  • s.b.zuniga/course-assignments
24 results
Show changes
Commits on Source (14)
Uploading assignment solutions for review
=========================================
Some assignments need additional data or come with some example startup code
for you to use. These are stored in a Git repository. Git can also be used to
share your solutions for review.
Start by configuring Git (only need to do this once per computer). In a
terminal, type:
git config --global user.name "John Doe"
git config --global user.email johndoe@example.com
Clone the assignments repository
--------------------------------
Use your webbrowser to go to:
https://git.lumc.nl/humgen/programming-course-assignments
Sign in using your LUMC account or the account you were emailed (notify a
teacher if you cannot login). Click the *Fork repository* button on the
right.
The resulting page is your fork of the repository. Bookmark this page in your
browser.
On your fork, click the *HTTPS* button on the top and copy the resulting URL,
e.g.,
`https://git.lumc.nl/johndoe/programming-course-assignments.git`.
Use this URL to clone the repository on your local computer. In a terminal,
type:
git clone https://git.lumc.nl/johndoe/programming-course-assignments.git
You now have a copy of the material on your computer. Change directory to it:
cd programming-course-assignments
Do an assignment
----------------
You'll have to figure this out yourself. Just make sure you do your work
within the directory we just created.
Commit and publish your solution
--------------------------------
For any files you created as part of your solution, run `git add`. For
example:
git add solution_1.py
Commit your changes to Git:
git commit -am 'Solution for assignment 1'
Push your changes to the server:
git push
You can repeat this section later when you did another assignment.
Share your solution
-------------------
Go to your project page (the one you bookmarked) where you should now see what
you pushed earlier.
You can of course share your solution simply by sharing a link to your project
page. However, there is a nice feature in GitLab called *merge requests* which
you can use to directly submit you solution to the teachers.
On your project page, click the green square button on the right (with three
horizontal white stripes) an choose *New merge request*. Make sure the *Source
branch* is set to *master* on your fork and the *Target branch* is set to
*master* on the original (*humgen*).
Click *Compare branches*. Enter an appropriate title and perhaps a description
before clicking *Submit merge request*. The resulting page can be used by you
and the teachers to discuss your solution.
{
"metadata": {
"name": "",
"signature": "sha256:cedf215df94e96ca29ce550848dcc31d28ad2a71ca8d94a1fcacba400c12b017"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Enable inline plotting\n",
"%matplotlib inline\n",
"%pylab inline\n",
"import pandas as pd\n",
"import numpy as np\n",
"\n",
"import seaborn as sns\n",
"import numpy as np\n",
"sns.set(font=\"Bitstream Vera Sans\")\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Populating the interactive namespace from numpy and matplotlib\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"df = pd.read_csv('data/iris.data', \n",
" header=None, \n",
" names=['sepal_length','sepal_width','petal_length','petal_width', 'class'], \n",
" keep_default_na=False,\n",
" engine='c')\n",
"\n",
"df"
],
"language": "python",
"metadata": {},
"outputs": [
{
"html": [
"<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>sepal_length</th>\n",
" <th>sepal_width</th>\n",
" <th>petal_length</th>\n",
" <th>petal_width</th>\n",
" <th>class</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0 </th>\n",
" <td> 5.1</td>\n",
" <td> 3.5</td>\n",
" <td> 1.4</td>\n",
" <td> 0.2</td>\n",
" <td> Iris-setosa</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1 </th>\n",
" <td> 4.9</td>\n",
" <td> 3.0</td>\n",
" <td> 1.4</td>\n",
" <td> 0.2</td>\n",
" <td> Iris-setosa</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2 </th>\n",
" <td> 4.7</td>\n",
" <td> 3.2</td>\n",
" <td> 1.3</td>\n",
" <td> 0.2</td>\n",
" <td> Iris-setosa</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3 </th>\n",
" <td> 4.6</td>\n",
" <td> 3.1</td>\n",
" <td> 1.5</td>\n",
" <td> 0.2</td>\n",
" <td> Iris-setosa</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4 </th>\n",
" <td> 5.0</td>\n",
" <td> 3.6</td>\n",
" <td> 1.4</td>\n",
" <td> 0.2</td>\n",
" <td> Iris-setosa</td>\n",
" </tr>\n",
" <tr>\n",
" <th>5 </th>\n",
" <td> 5.4</td>\n",
" <td> 3.9</td>\n",
" <td> 1.7</td>\n",
" <td> 0.4</td>\n",
" <td> Iris-setosa</td>\n",
" </tr>\n",
" <tr>\n",
" <th>6 </th>\n",
" <td> 4.6</td>\n",
" <td> 3.4</td>\n",
" <td> 1.4</td>\n",
" <td> 0.3</td>\n",
" <td> Iris-setosa</td>\n",
" </tr>\n",
" <tr>\n",
" <th>7 </th>\n",
" <td> 5.0</td>\n",
" <td> 3.4</td>\n",
" <td> 1.5</td>\n",
" <td> 0.2</td>\n",
" <td> Iris-setosa</td>\n",
" </tr>\n",
" <tr>\n",
" <th>8 </th>\n",
" <td> 4.4</td>\n",
" <td> 2.9</td>\n",
" <td> 1.4</td>\n",
" <td> 0.2</td>\n",
" <td> Iris-setosa</td>\n",
" </tr>\n",
" <tr>\n",
" <th>9 </th>\n",
" <td> 4.9</td>\n",
" <td> 3.1</td>\n",
" <td> 1.5</td>\n",
" <td> 0.1</td>\n",
" <td> Iris-setosa</td>\n",
" </tr>\n",
" <tr>\n",
" <th>10 </th>\n",
" <td> 5.4</td>\n",
" <td> 3.7</td>\n",
" <td> 1.5</td>\n",
" <td> 0.2</td>\n",
" <td> Iris-setosa</td>\n",
" </tr>\n",
" <tr>\n",
" <th>11 </th>\n",
" <td> 4.8</td>\n",
" <td> 3.4</td>\n",
" <td> 1.6</td>\n",
" <td> 0.2</td>\n",
" <td> Iris-setosa</td>\n",
" </tr>\n",
" <tr>\n",
" <th>12 </th>\n",
" <td> 4.8</td>\n",
" <td> 3.0</td>\n",
" <td> 1.4</td>\n",
" <td> 0.1</td>\n",
" <td> Iris-setosa</td>\n",
" </tr>\n",
" <tr>\n",
" <th>13 </th>\n",
" <td> 4.3</td>\n",
" <td> 3.0</td>\n",
" <td> 1.1</td>\n",
" <td> 0.1</td>\n",
" <td> Iris-setosa</td>\n",
" </tr>\n",
" <tr>\n",
" <th>14 </th>\n",
" <td> 5.8</td>\n",
" <td> 4.0</td>\n",
" <td> 1.2</td>\n",
" <td> 0.2</td>\n",
" <td> Iris-setosa</td>\n",
" </tr>\n",
" <tr>\n",
" <th>15 </th>\n",
" <td> 5.7</td>\n",
" <td> 4.4</td>\n",
" <td> 1.5</td>\n",
" <td> 0.4</td>\n",
" <td> Iris-setosa</td>\n",
" </tr>\n",
" <tr>\n",
" <th>16 </th>\n",
" <td> 5.4</td>\n",
" <td> 3.9</td>\n",
" <td> 1.3</td>\n",
" <td> 0.4</td>\n",
" <td> Iris-setosa</td>\n",
" </tr>\n",
" <tr>\n",
" <th>17 </th>\n",
" <td> 5.1</td>\n",
" <td> 3.5</td>\n",
" <td> 1.4</td>\n",
" <td> 0.3</td>\n",
" <td> Iris-setosa</td>\n",
" </tr>\n",
" <tr>\n",
" <th>18 </th>\n",
" <td> 5.7</td>\n",
" <td> 3.8</td>\n",
" <td> 1.7</td>\n",
" <td> 0.3</td>\n",
" <td> Iris-setosa</td>\n",
" </tr>\n",
" <tr>\n",
" <th>19 </th>\n",
" <td> 5.1</td>\n",
" <td> 3.8</td>\n",
" <td> 1.5</td>\n",
" <td> 0.3</td>\n",
" <td> Iris-setosa</td>\n",
" </tr>\n",
" <tr>\n",
" <th>20 </th>\n",
" <td> 5.4</td>\n",
" <td> 3.4</td>\n",
" <td> 1.7</td>\n",
" <td> 0.2</td>\n",
" <td> Iris-setosa</td>\n",
" </tr>\n",
" <tr>\n",
" <th>21 </th>\n",
" <td> 5.1</td>\n",
" <td> 3.7</td>\n",
" <td> 1.5</td>\n",
" <td> 0.4</td>\n",
" <td> Iris-setosa</td>\n",
" </tr>\n",
" <tr>\n",
" <th>22 </th>\n",
" <td> 4.6</td>\n",
" <td> 3.6</td>\n",
" <td> 1.0</td>\n",
" <td> 0.2</td>\n",
" <td> Iris-setosa</td>\n",
" </tr>\n",
" <tr>\n",
" <th>23 </th>\n",
" <td> 5.1</td>\n",
" <td> 3.3</td>\n",
" <td> 1.7</td>\n",
" <td> 0.5</td>\n",
" <td> Iris-setosa</td>\n",
" </tr>\n",
" <tr>\n",
" <th>24 </th>\n",
" <td> 4.8</td>\n",
" <td> 3.4</td>\n",
" <td> 1.9</td>\n",
" <td> 0.2</td>\n",
" <td> Iris-setosa</td>\n",
" </tr>\n",
" <tr>\n",
" <th>25 </th>\n",
" <td> 5.0</td>\n",
" <td> 3.0</td>\n",
" <td> 1.6</td>\n",
" <td> 0.2</td>\n",
" <td> Iris-setosa</td>\n",
" </tr>\n",
" <tr>\n",
" <th>26 </th>\n",
" <td> 5.0</td>\n",
" <td> 3.4</td>\n",
" <td> 1.6</td>\n",
" <td> 0.4</td>\n",
" <td> Iris-setosa</td>\n",
" </tr>\n",
" <tr>\n",
" <th>27 </th>\n",
" <td> 5.2</td>\n",
" <td> 3.5</td>\n",
" <td> 1.5</td>\n",
" <td> 0.2</td>\n",
" <td> Iris-setosa</td>\n",
" </tr>\n",
" <tr>\n",
" <th>28 </th>\n",
" <td> 5.2</td>\n",
" <td> 3.4</td>\n",
" <td> 1.4</td>\n",
" <td> 0.2</td>\n",
" <td> Iris-setosa</td>\n",
" </tr>\n",
" <tr>\n",
" <th>29 </th>\n",
" <td> 4.7</td>\n",
" <td> 3.2</td>\n",
" <td> 1.6</td>\n",
" <td> 0.2</td>\n",
" <td> Iris-setosa</td>\n",
" </tr>\n",
" <tr>\n",
" <th>...</th>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>121</th>\n",
" <td> 5.6</td>\n",
" <td> 2.8</td>\n",
" <td> 4.9</td>\n",
" <td> 2.0</td>\n",
" <td> Iris-virginica</td>\n",
" </tr>\n",
" <tr>\n",
" <th>122</th>\n",
" <td> 7.7</td>\n",
" <td> 2.8</td>\n",
" <td> 6.7</td>\n",
" <td> 2.0</td>\n",
" <td> Iris-virginica</td>\n",
" </tr>\n",
" <tr>\n",
" <th>123</th>\n",
" <td> 6.3</td>\n",
" <td> 2.7</td>\n",
" <td> 4.9</td>\n",
" <td> 1.8</td>\n",
" <td> Iris-virginica</td>\n",
" </tr>\n",
" <tr>\n",
" <th>124</th>\n",
" <td> 6.7</td>\n",
" <td> 3.3</td>\n",
" <td> 5.7</td>\n",
" <td> 2.1</td>\n",
" <td> Iris-virginica</td>\n",
" </tr>\n",
" <tr>\n",
" <th>125</th>\n",
" <td> 7.2</td>\n",
" <td> 3.2</td>\n",
" <td> 6.0</td>\n",
" <td> 1.8</td>\n",
" <td> Iris-virginica</td>\n",
" </tr>\n",
" <tr>\n",
" <th>126</th>\n",
" <td> 6.2</td>\n",
" <td> 2.8</td>\n",
" <td> 4.8</td>\n",
" <td> 1.8</td>\n",
" <td> Iris-virginica</td>\n",
" </tr>\n",
" <tr>\n",
" <th>127</th>\n",
" <td> 6.1</td>\n",
" <td> 3.0</td>\n",
" <td> 4.9</td>\n",
" <td> 1.8</td>\n",
" <td> Iris-virginica</td>\n",
" </tr>\n",
" <tr>\n",
" <th>128</th>\n",
" <td> 6.4</td>\n",
" <td> 2.8</td>\n",
" <td> 5.6</td>\n",
" <td> 2.1</td>\n",
" <td> Iris-virginica</td>\n",
" </tr>\n",
" <tr>\n",
" <th>129</th>\n",
" <td> 7.2</td>\n",
" <td> 3.0</td>\n",
" <td> 5.8</td>\n",
" <td> 1.6</td>\n",
" <td> Iris-virginica</td>\n",
" </tr>\n",
" <tr>\n",
" <th>130</th>\n",
" <td> 7.4</td>\n",
" <td> 2.8</td>\n",
" <td> 6.1</td>\n",
" <td> 1.9</td>\n",
" <td> Iris-virginica</td>\n",
" </tr>\n",
" <tr>\n",
" <th>131</th>\n",
" <td> 7.9</td>\n",
" <td> 3.8</td>\n",
" <td> 6.4</td>\n",
" <td> 2.0</td>\n",
" <td> Iris-virginica</td>\n",
" </tr>\n",
" <tr>\n",
" <th>132</th>\n",
" <td> 6.4</td>\n",
" <td> 2.8</td>\n",
" <td> 5.6</td>\n",
" <td> 2.2</td>\n",
" <td> Iris-virginica</td>\n",
" </tr>\n",
" <tr>\n",
" <th>133</th>\n",
" <td> 6.3</td>\n",
" <td> 2.8</td>\n",
" <td> 5.1</td>\n",
" <td> 1.5</td>\n",
" <td> Iris-virginica</td>\n",
" </tr>\n",
" <tr>\n",
" <th>134</th>\n",
" <td> 6.1</td>\n",
" <td> 2.6</td>\n",
" <td> 5.6</td>\n",
" <td> 1.4</td>\n",
" <td> Iris-virginica</td>\n",
" </tr>\n",
" <tr>\n",
" <th>135</th>\n",
" <td> 7.7</td>\n",
" <td> 3.0</td>\n",
" <td> 6.1</td>\n",
" <td> 2.3</td>\n",
" <td> Iris-virginica</td>\n",
" </tr>\n",
" <tr>\n",
" <th>136</th>\n",
" <td> 6.3</td>\n",
" <td> 3.4</td>\n",
" <td> 5.6</td>\n",
" <td> 2.4</td>\n",
" <td> Iris-virginica</td>\n",
" </tr>\n",
" <tr>\n",
" <th>137</th>\n",
" <td> 6.4</td>\n",
" <td> 3.1</td>\n",
" <td> 5.5</td>\n",
" <td> 1.8</td>\n",
" <td> Iris-virginica</td>\n",
" </tr>\n",
" <tr>\n",
" <th>138</th>\n",
" <td> 6.0</td>\n",
" <td> 3.0</td>\n",
" <td> 4.8</td>\n",
" <td> 1.8</td>\n",
" <td> Iris-virginica</td>\n",
" </tr>\n",
" <tr>\n",
" <th>139</th>\n",
" <td> 6.9</td>\n",
" <td> 3.1</td>\n",
" <td> 5.4</td>\n",
" <td> 2.1</td>\n",
" <td> Iris-virginica</td>\n",
" </tr>\n",
" <tr>\n",
" <th>140</th>\n",
" <td> 6.7</td>\n",
" <td> 3.1</td>\n",
" <td> 5.6</td>\n",
" <td> 2.4</td>\n",
" <td> Iris-virginica</td>\n",
" </tr>\n",
" <tr>\n",
" <th>141</th>\n",
" <td> 6.9</td>\n",
" <td> 3.1</td>\n",
" <td> 5.1</td>\n",
" <td> 2.3</td>\n",
" <td> Iris-virginica</td>\n",
" </tr>\n",
" <tr>\n",
" <th>142</th>\n",
" <td> 5.8</td>\n",
" <td> 2.7</td>\n",
" <td> 5.1</td>\n",
" <td> 1.9</td>\n",
" <td> Iris-virginica</td>\n",
" </tr>\n",
" <tr>\n",
" <th>143</th>\n",
" <td> 6.8</td>\n",
" <td> 3.2</td>\n",
" <td> 5.9</td>\n",
" <td> 2.3</td>\n",
" <td> Iris-virginica</td>\n",
" </tr>\n",
" <tr>\n",
" <th>144</th>\n",
" <td> 6.7</td>\n",
" <td> 3.3</td>\n",
" <td> 5.7</td>\n",
" <td> 2.5</td>\n",
" <td> Iris-virginica</td>\n",
" </tr>\n",
" <tr>\n",
" <th>145</th>\n",
" <td> 6.7</td>\n",
" <td> 3.0</td>\n",
" <td> 5.2</td>\n",
" <td> 2.3</td>\n",
" <td> Iris-virginica</td>\n",
" </tr>\n",
" <tr>\n",
" <th>146</th>\n",
" <td> 6.3</td>\n",
" <td> 2.5</td>\n",
" <td> 5.0</td>\n",
" <td> 1.9</td>\n",
" <td> Iris-virginica</td>\n",
" </tr>\n",
" <tr>\n",
" <th>147</th>\n",
" <td> 6.5</td>\n",
" <td> 3.0</td>\n",
" <td> 5.2</td>\n",
" <td> 2.0</td>\n",
" <td> Iris-virginica</td>\n",
" </tr>\n",
" <tr>\n",
" <th>148</th>\n",
" <td> 6.2</td>\n",
" <td> 3.4</td>\n",
" <td> 5.4</td>\n",
" <td> 2.3</td>\n",
" <td> Iris-virginica</td>\n",
" </tr>\n",
" <tr>\n",
" <th>149</th>\n",
" <td> 5.9</td>\n",
" <td> 3.0</td>\n",
" <td> 5.1</td>\n",
" <td> 1.8</td>\n",
" <td> Iris-virginica</td>\n",
" </tr>\n",
" <tr>\n",
" <th>150</th>\n",
" <td> </td>\n",
" <td> </td>\n",
" <td> </td>\n",
" <td> </td>\n",
" <td> </td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>151 rows \u00d7 5 columns</p>\n",
"</div>"
],
"metadata": {},
"output_type": "pyout",
"prompt_number": 2,
"text": [
" sepal_length sepal_width petal_length petal_width class\n",
"0 5.1 3.5 1.4 0.2 Iris-setosa\n",
"1 4.9 3.0 1.4 0.2 Iris-setosa\n",
"2 4.7 3.2 1.3 0.2 Iris-setosa\n",
"3 4.6 3.1 1.5 0.2 Iris-setosa\n",
"4 5.0 3.6 1.4 0.2 Iris-setosa\n",
"5 5.4 3.9 1.7 0.4 Iris-setosa\n",
"6 4.6 3.4 1.4 0.3 Iris-setosa\n",
"7 5.0 3.4 1.5 0.2 Iris-setosa\n",
"8 4.4 2.9 1.4 0.2 Iris-setosa\n",
"9 4.9 3.1 1.5 0.1 Iris-setosa\n",
"10 5.4 3.7 1.5 0.2 Iris-setosa\n",
"11 4.8 3.4 1.6 0.2 Iris-setosa\n",
"12 4.8 3.0 1.4 0.1 Iris-setosa\n",
"13 4.3 3.0 1.1 0.1 Iris-setosa\n",
"14 5.8 4.0 1.2 0.2 Iris-setosa\n",
"15 5.7 4.4 1.5 0.4 Iris-setosa\n",
"16 5.4 3.9 1.3 0.4 Iris-setosa\n",
"17 5.1 3.5 1.4 0.3 Iris-setosa\n",
"18 5.7 3.8 1.7 0.3 Iris-setosa\n",
"19 5.1 3.8 1.5 0.3 Iris-setosa\n",
"20 5.4 3.4 1.7 0.2 Iris-setosa\n",
"21 5.1 3.7 1.5 0.4 Iris-setosa\n",
"22 4.6 3.6 1.0 0.2 Iris-setosa\n",
"23 5.1 3.3 1.7 0.5 Iris-setosa\n",
"24 4.8 3.4 1.9 0.2 Iris-setosa\n",
"25 5.0 3.0 1.6 0.2 Iris-setosa\n",
"26 5.0 3.4 1.6 0.4 Iris-setosa\n",
"27 5.2 3.5 1.5 0.2 Iris-setosa\n",
"28 5.2 3.4 1.4 0.2 Iris-setosa\n",
"29 4.7 3.2 1.6 0.2 Iris-setosa\n",
".. ... ... ... ... ...\n",
"121 5.6 2.8 4.9 2.0 Iris-virginica\n",
"122 7.7 2.8 6.7 2.0 Iris-virginica\n",
"123 6.3 2.7 4.9 1.8 Iris-virginica\n",
"124 6.7 3.3 5.7 2.1 Iris-virginica\n",
"125 7.2 3.2 6.0 1.8 Iris-virginica\n",
"126 6.2 2.8 4.8 1.8 Iris-virginica\n",
"127 6.1 3.0 4.9 1.8 Iris-virginica\n",
"128 6.4 2.8 5.6 2.1 Iris-virginica\n",
"129 7.2 3.0 5.8 1.6 Iris-virginica\n",
"130 7.4 2.8 6.1 1.9 Iris-virginica\n",
"131 7.9 3.8 6.4 2.0 Iris-virginica\n",
"132 6.4 2.8 5.6 2.2 Iris-virginica\n",
"133 6.3 2.8 5.1 1.5 Iris-virginica\n",
"134 6.1 2.6 5.6 1.4 Iris-virginica\n",
"135 7.7 3.0 6.1 2.3 Iris-virginica\n",
"136 6.3 3.4 5.6 2.4 Iris-virginica\n",
"137 6.4 3.1 5.5 1.8 Iris-virginica\n",
"138 6.0 3.0 4.8 1.8 Iris-virginica\n",
"139 6.9 3.1 5.4 2.1 Iris-virginica\n",
"140 6.7 3.1 5.6 2.4 Iris-virginica\n",
"141 6.9 3.1 5.1 2.3 Iris-virginica\n",
"142 5.8 2.7 5.1 1.9 Iris-virginica\n",
"143 6.8 3.2 5.9 2.3 Iris-virginica\n",
"144 6.7 3.3 5.7 2.5 Iris-virginica\n",
"145 6.7 3.0 5.2 2.3 Iris-virginica\n",
"146 6.3 2.5 5.0 1.9 Iris-virginica\n",
"147 6.5 3.0 5.2 2.0 Iris-virginica\n",
"148 6.2 3.4 5.4 2.3 Iris-virginica\n",
"149 5.9 3.0 5.1 1.8 Iris-virginica\n",
"150 \n",
"\n",
"[151 rows x 5 columns]"
]
}
],
"prompt_number": 2
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"df['sepal_length'] = df['sepal_length'].convert_objects(convert_numeric=True)\n",
"df['sepal_width'] = df['sepal_width'].convert_objects(convert_numeric=True)\n",
"df['petal_length'] = df['petal_length'].convert_objects(convert_numeric=True)\n",
"df['petal_width'] = df['petal_width'].convert_objects(convert_numeric=True)\n",
"df"
],
"language": "python",
"metadata": {},
"outputs": [
{
"html": [
"<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>sepal_length</th>\n",
" <th>sepal_width</th>\n",
" <th>petal_length</th>\n",
" <th>petal_width</th>\n",
" <th>class</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0 </th>\n",
" <td> 5.1</td>\n",
" <td> 3.5</td>\n",
" <td> 1.4</td>\n",
" <td> 0.2</td>\n",
" <td> Iris-setosa</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1 </th>\n",
" <td> 4.9</td>\n",
" <td> 3.0</td>\n",
" <td> 1.4</td>\n",
" <td> 0.2</td>\n",
" <td> Iris-setosa</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2 </th>\n",
" <td> 4.7</td>\n",
" <td> 3.2</td>\n",
" <td> 1.3</td>\n",
" <td> 0.2</td>\n",
" <td> Iris-setosa</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3 </th>\n",
" <td> 4.6</td>\n",
" <td> 3.1</td>\n",
" <td> 1.5</td>\n",
" <td> 0.2</td>\n",
" <td> Iris-setosa</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4 </th>\n",
" <td> 5.0</td>\n",
" <td> 3.6</td>\n",
" <td> 1.4</td>\n",
" <td> 0.2</td>\n",
" <td> Iris-setosa</td>\n",
" </tr>\n",
" <tr>\n",
" <th>5 </th>\n",
" <td> 5.4</td>\n",
" <td> 3.9</td>\n",
" <td> 1.7</td>\n",
" <td> 0.4</td>\n",
" <td> Iris-setosa</td>\n",
" </tr>\n",
" <tr>\n",
" <th>6 </th>\n",
" <td> 4.6</td>\n",
" <td> 3.4</td>\n",
" <td> 1.4</td>\n",
" <td> 0.3</td>\n",
" <td> Iris-setosa</td>\n",
" </tr>\n",
" <tr>\n",
" <th>7 </th>\n",
" <td> 5.0</td>\n",
" <td> 3.4</td>\n",
" <td> 1.5</td>\n",
" <td> 0.2</td>\n",
" <td> Iris-setosa</td>\n",
" </tr>\n",
" <tr>\n",
" <th>8 </th>\n",
" <td> 4.4</td>\n",
" <td> 2.9</td>\n",
" <td> 1.4</td>\n",
" <td> 0.2</td>\n",
" <td> Iris-setosa</td>\n",
" </tr>\n",
" <tr>\n",
" <th>9 </th>\n",
" <td> 4.9</td>\n",
" <td> 3.1</td>\n",
" <td> 1.5</td>\n",
" <td> 0.1</td>\n",
" <td> Iris-setosa</td>\n",
" </tr>\n",
" <tr>\n",
" <th>10 </th>\n",
" <td> 5.4</td>\n",
" <td> 3.7</td>\n",
" <td> 1.5</td>\n",
" <td> 0.2</td>\n",
" <td> Iris-setosa</td>\n",
" </tr>\n",
" <tr>\n",
" <th>11 </th>\n",
" <td> 4.8</td>\n",
" <td> 3.4</td>\n",
" <td> 1.6</td>\n",
" <td> 0.2</td>\n",
" <td> Iris-setosa</td>\n",
" </tr>\n",
" <tr>\n",
" <th>12 </th>\n",
" <td> 4.8</td>\n",
" <td> 3.0</td>\n",
" <td> 1.4</td>\n",
" <td> 0.1</td>\n",
" <td> Iris-setosa</td>\n",
" </tr>\n",
" <tr>\n",
" <th>13 </th>\n",
" <td> 4.3</td>\n",
" <td> 3.0</td>\n",
" <td> 1.1</td>\n",
" <td> 0.1</td>\n",
" <td> Iris-setosa</td>\n",
" </tr>\n",
" <tr>\n",
" <th>14 </th>\n",
" <td> 5.8</td>\n",
" <td> 4.0</td>\n",
" <td> 1.2</td>\n",
" <td> 0.2</td>\n",
" <td> Iris-setosa</td>\n",
" </tr>\n",
" <tr>\n",
" <th>15 </th>\n",
" <td> 5.7</td>\n",
" <td> 4.4</td>\n",
" <td> 1.5</td>\n",
" <td> 0.4</td>\n",
" <td> Iris-setosa</td>\n",
" </tr>\n",
" <tr>\n",
" <th>16 </th>\n",
" <td> 5.4</td>\n",
" <td> 3.9</td>\n",
" <td> 1.3</td>\n",
" <td> 0.4</td>\n",
" <td> Iris-setosa</td>\n",
" </tr>\n",
" <tr>\n",
" <th>17 </th>\n",
" <td> 5.1</td>\n",
" <td> 3.5</td>\n",
" <td> 1.4</td>\n",
" <td> 0.3</td>\n",
" <td> Iris-setosa</td>\n",
" </tr>\n",
" <tr>\n",
" <th>18 </th>\n",
" <td> 5.7</td>\n",
" <td> 3.8</td>\n",
" <td> 1.7</td>\n",
" <td> 0.3</td>\n",
" <td> Iris-setosa</td>\n",
" </tr>\n",
" <tr>\n",
" <th>19 </th>\n",
" <td> 5.1</td>\n",
" <td> 3.8</td>\n",
" <td> 1.5</td>\n",
" <td> 0.3</td>\n",
" <td> Iris-setosa</td>\n",
" </tr>\n",
" <tr>\n",
" <th>20 </th>\n",
" <td> 5.4</td>\n",
" <td> 3.4</td>\n",
" <td> 1.7</td>\n",
" <td> 0.2</td>\n",
" <td> Iris-setosa</td>\n",
" </tr>\n",
" <tr>\n",
" <th>21 </th>\n",
" <td> 5.1</td>\n",
" <td> 3.7</td>\n",
" <td> 1.5</td>\n",
" <td> 0.4</td>\n",
" <td> Iris-setosa</td>\n",
" </tr>\n",
" <tr>\n",
" <th>22 </th>\n",
" <td> 4.6</td>\n",
" <td> 3.6</td>\n",
" <td> 1.0</td>\n",
" <td> 0.2</td>\n",
" <td> Iris-setosa</td>\n",
" </tr>\n",
" <tr>\n",
" <th>23 </th>\n",
" <td> 5.1</td>\n",
" <td> 3.3</td>\n",
" <td> 1.7</td>\n",
" <td> 0.5</td>\n",
" <td> Iris-setosa</td>\n",
" </tr>\n",
" <tr>\n",
" <th>24 </th>\n",
" <td> 4.8</td>\n",
" <td> 3.4</td>\n",
" <td> 1.9</td>\n",
" <td> 0.2</td>\n",
" <td> Iris-setosa</td>\n",
" </tr>\n",
" <tr>\n",
" <th>25 </th>\n",
" <td> 5.0</td>\n",
" <td> 3.0</td>\n",
" <td> 1.6</td>\n",
" <td> 0.2</td>\n",
" <td> Iris-setosa</td>\n",
" </tr>\n",
" <tr>\n",
" <th>26 </th>\n",
" <td> 5.0</td>\n",
" <td> 3.4</td>\n",
" <td> 1.6</td>\n",
" <td> 0.4</td>\n",
" <td> Iris-setosa</td>\n",
" </tr>\n",
" <tr>\n",
" <th>27 </th>\n",
" <td> 5.2</td>\n",
" <td> 3.5</td>\n",
" <td> 1.5</td>\n",
" <td> 0.2</td>\n",
" <td> Iris-setosa</td>\n",
" </tr>\n",
" <tr>\n",
" <th>28 </th>\n",
" <td> 5.2</td>\n",
" <td> 3.4</td>\n",
" <td> 1.4</td>\n",
" <td> 0.2</td>\n",
" <td> Iris-setosa</td>\n",
" </tr>\n",
" <tr>\n",
" <th>29 </th>\n",
" <td> 4.7</td>\n",
" <td> 3.2</td>\n",
" <td> 1.6</td>\n",
" <td> 0.2</td>\n",
" <td> Iris-setosa</td>\n",
" </tr>\n",
" <tr>\n",
" <th>...</th>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>121</th>\n",
" <td> 5.6</td>\n",
" <td> 2.8</td>\n",
" <td> 4.9</td>\n",
" <td> 2.0</td>\n",
" <td> Iris-virginica</td>\n",
" </tr>\n",
" <tr>\n",
" <th>122</th>\n",
" <td> 7.7</td>\n",
" <td> 2.8</td>\n",
" <td> 6.7</td>\n",
" <td> 2.0</td>\n",
" <td> Iris-virginica</td>\n",
" </tr>\n",
" <tr>\n",
" <th>123</th>\n",
" <td> 6.3</td>\n",
" <td> 2.7</td>\n",
" <td> 4.9</td>\n",
" <td> 1.8</td>\n",
" <td> Iris-virginica</td>\n",
" </tr>\n",
" <tr>\n",
" <th>124</th>\n",
" <td> 6.7</td>\n",
" <td> 3.3</td>\n",
" <td> 5.7</td>\n",
" <td> 2.1</td>\n",
" <td> Iris-virginica</td>\n",
" </tr>\n",
" <tr>\n",
" <th>125</th>\n",
" <td> 7.2</td>\n",
" <td> 3.2</td>\n",
" <td> 6.0</td>\n",
" <td> 1.8</td>\n",
" <td> Iris-virginica</td>\n",
" </tr>\n",
" <tr>\n",
" <th>126</th>\n",
" <td> 6.2</td>\n",
" <td> 2.8</td>\n",
" <td> 4.8</td>\n",
" <td> 1.8</td>\n",
" <td> Iris-virginica</td>\n",
" </tr>\n",
" <tr>\n",
" <th>127</th>\n",
" <td> 6.1</td>\n",
" <td> 3.0</td>\n",
" <td> 4.9</td>\n",
" <td> 1.8</td>\n",
" <td> Iris-virginica</td>\n",
" </tr>\n",
" <tr>\n",
" <th>128</th>\n",
" <td> 6.4</td>\n",
" <td> 2.8</td>\n",
" <td> 5.6</td>\n",
" <td> 2.1</td>\n",
" <td> Iris-virginica</td>\n",
" </tr>\n",
" <tr>\n",
" <th>129</th>\n",
" <td> 7.2</td>\n",
" <td> 3.0</td>\n",
" <td> 5.8</td>\n",
" <td> 1.6</td>\n",
" <td> Iris-virginica</td>\n",
" </tr>\n",
" <tr>\n",
" <th>130</th>\n",
" <td> 7.4</td>\n",
" <td> 2.8</td>\n",
" <td> 6.1</td>\n",
" <td> 1.9</td>\n",
" <td> Iris-virginica</td>\n",
" </tr>\n",
" <tr>\n",
" <th>131</th>\n",
" <td> 7.9</td>\n",
" <td> 3.8</td>\n",
" <td> 6.4</td>\n",
" <td> 2.0</td>\n",
" <td> Iris-virginica</td>\n",
" </tr>\n",
" <tr>\n",
" <th>132</th>\n",
" <td> 6.4</td>\n",
" <td> 2.8</td>\n",
" <td> 5.6</td>\n",
" <td> 2.2</td>\n",
" <td> Iris-virginica</td>\n",
" </tr>\n",
" <tr>\n",
" <th>133</th>\n",
" <td> 6.3</td>\n",
" <td> 2.8</td>\n",
" <td> 5.1</td>\n",
" <td> 1.5</td>\n",
" <td> Iris-virginica</td>\n",
" </tr>\n",
" <tr>\n",
" <th>134</th>\n",
" <td> 6.1</td>\n",
" <td> 2.6</td>\n",
" <td> 5.6</td>\n",
" <td> 1.4</td>\n",
" <td> Iris-virginica</td>\n",
" </tr>\n",
" <tr>\n",
" <th>135</th>\n",
" <td> 7.7</td>\n",
" <td> 3.0</td>\n",
" <td> 6.1</td>\n",
" <td> 2.3</td>\n",
" <td> Iris-virginica</td>\n",
" </tr>\n",
" <tr>\n",
" <th>136</th>\n",
" <td> 6.3</td>\n",
" <td> 3.4</td>\n",
" <td> 5.6</td>\n",
" <td> 2.4</td>\n",
" <td> Iris-virginica</td>\n",
" </tr>\n",
" <tr>\n",
" <th>137</th>\n",
" <td> 6.4</td>\n",
" <td> 3.1</td>\n",
" <td> 5.5</td>\n",
" <td> 1.8</td>\n",
" <td> Iris-virginica</td>\n",
" </tr>\n",
" <tr>\n",
" <th>138</th>\n",
" <td> 6.0</td>\n",
" <td> 3.0</td>\n",
" <td> 4.8</td>\n",
" <td> 1.8</td>\n",
" <td> Iris-virginica</td>\n",
" </tr>\n",
" <tr>\n",
" <th>139</th>\n",
" <td> 6.9</td>\n",
" <td> 3.1</td>\n",
" <td> 5.4</td>\n",
" <td> 2.1</td>\n",
" <td> Iris-virginica</td>\n",
" </tr>\n",
" <tr>\n",
" <th>140</th>\n",
" <td> 6.7</td>\n",
" <td> 3.1</td>\n",
" <td> 5.6</td>\n",
" <td> 2.4</td>\n",
" <td> Iris-virginica</td>\n",
" </tr>\n",
" <tr>\n",
" <th>141</th>\n",
" <td> 6.9</td>\n",
" <td> 3.1</td>\n",
" <td> 5.1</td>\n",
" <td> 2.3</td>\n",
" <td> Iris-virginica</td>\n",
" </tr>\n",
" <tr>\n",
" <th>142</th>\n",
" <td> 5.8</td>\n",
" <td> 2.7</td>\n",
" <td> 5.1</td>\n",
" <td> 1.9</td>\n",
" <td> Iris-virginica</td>\n",
" </tr>\n",
" <tr>\n",
" <th>143</th>\n",
" <td> 6.8</td>\n",
" <td> 3.2</td>\n",
" <td> 5.9</td>\n",
" <td> 2.3</td>\n",
" <td> Iris-virginica</td>\n",
" </tr>\n",
" <tr>\n",
" <th>144</th>\n",
" <td> 6.7</td>\n",
" <td> 3.3</td>\n",
" <td> 5.7</td>\n",
" <td> 2.5</td>\n",
" <td> Iris-virginica</td>\n",
" </tr>\n",
" <tr>\n",
" <th>145</th>\n",
" <td> 6.7</td>\n",
" <td> 3.0</td>\n",
" <td> 5.2</td>\n",
" <td> 2.3</td>\n",
" <td> Iris-virginica</td>\n",
" </tr>\n",
" <tr>\n",
" <th>146</th>\n",
" <td> 6.3</td>\n",
" <td> 2.5</td>\n",
" <td> 5.0</td>\n",
" <td> 1.9</td>\n",
" <td> Iris-virginica</td>\n",
" </tr>\n",
" <tr>\n",
" <th>147</th>\n",
" <td> 6.5</td>\n",
" <td> 3.0</td>\n",
" <td> 5.2</td>\n",
" <td> 2.0</td>\n",
" <td> Iris-virginica</td>\n",
" </tr>\n",
" <tr>\n",
" <th>148</th>\n",
" <td> 6.2</td>\n",
" <td> 3.4</td>\n",
" <td> 5.4</td>\n",
" <td> 2.3</td>\n",
" <td> Iris-virginica</td>\n",
" </tr>\n",
" <tr>\n",
" <th>149</th>\n",
" <td> 5.9</td>\n",
" <td> 3.0</td>\n",
" <td> 5.1</td>\n",
" <td> 1.8</td>\n",
" <td> Iris-virginica</td>\n",
" </tr>\n",
" <tr>\n",
" <th>150</th>\n",
" <td> NaN</td>\n",
" <td> NaN</td>\n",
" <td> NaN</td>\n",
" <td> NaN</td>\n",
" <td> </td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>151 rows \u00d7 5 columns</p>\n",
"</div>"
],
"metadata": {},
"output_type": "pyout",
"prompt_number": 3,
"text": [
" sepal_length sepal_width petal_length petal_width class\n",
"0 5.1 3.5 1.4 0.2 Iris-setosa\n",
"1 4.9 3.0 1.4 0.2 Iris-setosa\n",
"2 4.7 3.2 1.3 0.2 Iris-setosa\n",
"3 4.6 3.1 1.5 0.2 Iris-setosa\n",
"4 5.0 3.6 1.4 0.2 Iris-setosa\n",
"5 5.4 3.9 1.7 0.4 Iris-setosa\n",
"6 4.6 3.4 1.4 0.3 Iris-setosa\n",
"7 5.0 3.4 1.5 0.2 Iris-setosa\n",
"8 4.4 2.9 1.4 0.2 Iris-setosa\n",
"9 4.9 3.1 1.5 0.1 Iris-setosa\n",
"10 5.4 3.7 1.5 0.2 Iris-setosa\n",
"11 4.8 3.4 1.6 0.2 Iris-setosa\n",
"12 4.8 3.0 1.4 0.1 Iris-setosa\n",
"13 4.3 3.0 1.1 0.1 Iris-setosa\n",
"14 5.8 4.0 1.2 0.2 Iris-setosa\n",
"15 5.7 4.4 1.5 0.4 Iris-setosa\n",
"16 5.4 3.9 1.3 0.4 Iris-setosa\n",
"17 5.1 3.5 1.4 0.3 Iris-setosa\n",
"18 5.7 3.8 1.7 0.3 Iris-setosa\n",
"19 5.1 3.8 1.5 0.3 Iris-setosa\n",
"20 5.4 3.4 1.7 0.2 Iris-setosa\n",
"21 5.1 3.7 1.5 0.4 Iris-setosa\n",
"22 4.6 3.6 1.0 0.2 Iris-setosa\n",
"23 5.1 3.3 1.7 0.5 Iris-setosa\n",
"24 4.8 3.4 1.9 0.2 Iris-setosa\n",
"25 5.0 3.0 1.6 0.2 Iris-setosa\n",
"26 5.0 3.4 1.6 0.4 Iris-setosa\n",
"27 5.2 3.5 1.5 0.2 Iris-setosa\n",
"28 5.2 3.4 1.4 0.2 Iris-setosa\n",
"29 4.7 3.2 1.6 0.2 Iris-setosa\n",
".. ... ... ... ... ...\n",
"121 5.6 2.8 4.9 2.0 Iris-virginica\n",
"122 7.7 2.8 6.7 2.0 Iris-virginica\n",
"123 6.3 2.7 4.9 1.8 Iris-virginica\n",
"124 6.7 3.3 5.7 2.1 Iris-virginica\n",
"125 7.2 3.2 6.0 1.8 Iris-virginica\n",
"126 6.2 2.8 4.8 1.8 Iris-virginica\n",
"127 6.1 3.0 4.9 1.8 Iris-virginica\n",
"128 6.4 2.8 5.6 2.1 Iris-virginica\n",
"129 7.2 3.0 5.8 1.6 Iris-virginica\n",
"130 7.4 2.8 6.1 1.9 Iris-virginica\n",
"131 7.9 3.8 6.4 2.0 Iris-virginica\n",
"132 6.4 2.8 5.6 2.2 Iris-virginica\n",
"133 6.3 2.8 5.1 1.5 Iris-virginica\n",
"134 6.1 2.6 5.6 1.4 Iris-virginica\n",
"135 7.7 3.0 6.1 2.3 Iris-virginica\n",
"136 6.3 3.4 5.6 2.4 Iris-virginica\n",
"137 6.4 3.1 5.5 1.8 Iris-virginica\n",
"138 6.0 3.0 4.8 1.8 Iris-virginica\n",
"139 6.9 3.1 5.4 2.1 Iris-virginica\n",
"140 6.7 3.1 5.6 2.4 Iris-virginica\n",
"141 6.9 3.1 5.1 2.3 Iris-virginica\n",
"142 5.8 2.7 5.1 1.9 Iris-virginica\n",
"143 6.8 3.2 5.9 2.3 Iris-virginica\n",
"144 6.7 3.3 5.7 2.5 Iris-virginica\n",
"145 6.7 3.0 5.2 2.3 Iris-virginica\n",
"146 6.3 2.5 5.0 1.9 Iris-virginica\n",
"147 6.5 3.0 5.2 2.0 Iris-virginica\n",
"148 6.2 3.4 5.4 2.3 Iris-virginica\n",
"149 5.9 3.0 5.1 1.8 Iris-virginica\n",
"150 NaN NaN NaN NaN \n",
"\n",
"[151 rows x 5 columns]"
]
}
],
"prompt_number": 3
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"summary = df.describe()"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 4
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"summary"
],
"language": "python",
"metadata": {},
"outputs": [
{
"html": [
"<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>sepal_length</th>\n",
" <th>sepal_width</th>\n",
" <th>petal_length</th>\n",
" <th>petal_width</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>count</th>\n",
" <td> 150.000000</td>\n",
" <td> 150.000000</td>\n",
" <td> 150.000000</td>\n",
" <td> 150.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>mean</th>\n",
" <td> 5.843333</td>\n",
" <td> 3.054000</td>\n",
" <td> 3.758667</td>\n",
" <td> 1.198667</td>\n",
" </tr>\n",
" <tr>\n",
" <th>std</th>\n",
" <td> 0.828066</td>\n",
" <td> 0.433594</td>\n",
" <td> 1.764420</td>\n",
" <td> 0.763161</td>\n",
" </tr>\n",
" <tr>\n",
" <th>min</th>\n",
" <td> 4.300000</td>\n",
" <td> 2.000000</td>\n",
" <td> 1.000000</td>\n",
" <td> 0.100000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>25%</th>\n",
" <td> 5.100000</td>\n",
" <td> 2.800000</td>\n",
" <td> 1.600000</td>\n",
" <td> 0.300000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>50%</th>\n",
" <td> 5.800000</td>\n",
" <td> 3.000000</td>\n",
" <td> 4.350000</td>\n",
" <td> 1.300000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>75%</th>\n",
" <td> 6.400000</td>\n",
" <td> 3.300000</td>\n",
" <td> 5.100000</td>\n",
" <td> 1.800000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>max</th>\n",
" <td> 7.900000</td>\n",
" <td> 4.400000</td>\n",
" <td> 6.900000</td>\n",
" <td> 2.500000</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"metadata": {},
"output_type": "pyout",
"prompt_number": 5,
"text": [
" sepal_length sepal_width petal_length petal_width\n",
"count 150.000000 150.000000 150.000000 150.000000\n",
"mean 5.843333 3.054000 3.758667 1.198667\n",
"std 0.828066 0.433594 1.764420 0.763161\n",
"min 4.300000 2.000000 1.000000 0.100000\n",
"25% 5.100000 2.800000 1.600000 0.300000\n",
"50% 5.800000 3.000000 4.350000 1.300000\n",
"75% 6.400000 3.300000 5.100000 1.800000\n",
"max 7.900000 4.400000 6.900000 2.500000"
]
}
],
"prompt_number": 5
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"df.plot(style='o')"
],
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "pyout",
"prompt_number": 6,
"text": [
"<matplotlib.axes.AxesSubplot at 0x3b08750>"
]
},
{
"metadata": {},
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAeEAAAFXCAYAAACV2fZmAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnXmcFcW5939nVpiFmQEHAVHBpdhBDBp3TW5ujCYm5kqU\nGANXDNEoblHcUCQargsuQdwiESNZRA0xN+ZqEt+4YxJNgogKKRRQUUCQAQaGAWbmvH+c6UOfPtXd\n1d3V3dV9nm8+fjL0dHc9T1WdU9P16+d5AIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIg\nCIIgCIIgCN9k3E5gjF0L4BwAXQCWATiXc74rbMMIgiAIIu2UOf2SMTYIwBQAh3PORwEoBzAhArsI\ngiAIIvVUuPx+G4A9AGoYY50AagB8HLpVBEEQBFECOD4Jc843A7gTwIcAPgGwhXP+/6IwjCAIgiDS\njtt29MEALgMwCMAAAHWMse9EYBdBEARBpB637ehxAF7jnH8GAIyx3wI4BsCvRCd3dXVlMxnXd70I\ngiAIIjVkAix8bovwCgA3MMZ6AmgH8CUArzsYgo0bW/3aoj3NzfXkX4Ih/5JLmn0D4vHvjoVLsHxN\nCwBg2KAmXDlhbGhtpX38guCmCS8FsADAPwC81X34obCNIgiCIMLjjoVL8O6aFmQBZAG8u6YFV9y3\nGB+sp4UyatyehME5vx3A7RHYQhAEQUSA8QRspqV1F+5Z9BbuvOjYGCwqXRyfhAmCIAiCCA9ahAmC\nIEqMYYOaio411VfjkjNGx2BNaUOLMEEQRIlx5YSxaKqvzv+7qb4ad150LA7sVx+jVaUJLcIEQRAl\nyCVnjEZTfTU9AceM64tZBEEQhD/MYUA1PSrQ1t4BwD0kKIrwoQP71Uu/hBVlOFOpQU/CBEEQIWAN\nA9rR3iEVEqRb+JBu9qQN7RbhOxYuwXm3Po/zbn0edyxcErc5jvzrX//AVVddbvv7Z555GnffrT66\n69ln/4BNmzbl/z1+/GnYtm2r8nYIgvCPKAzIjBESJHOd3blRoJs9aUOrRThtf3GFlcLzmWeexqZN\nGwvayWazobRFEARBhIdWmnAYAeQ7d+7EjBnXYOPGjejq6sSkSd/DfvsNxL333o2dO3eioaER06ff\niD599sHUqd/HoYcOwZtv/hOdnZ249toZGDZsBN59923cc89d6OrqQHl5Ba699kYccMCBnuxoaWnB\nnXfegg0b1gMALrnkCowaNQYPP/xTbNiwHuvWfYING9bjzDO/jfHjcyWbf/7zn+HPf34WjY1N6Nt3\nXwwZMgz9+/fHihXLcdNN16NHjx544IH5AIDf/OZxLF78Cjo7O3DzzbfigAMG+eovgkgDOmiYwwY1\n4V2Hp2G7F6JE18X58pRu9qQNrZ6Ew+Dvf38N++zTFz//+a+xYMHjOOqoozFnzmzMmnU7Hn74F/jq\nV0/DQw/dDyD3RLlrVzseeeTXuOKKa3DLLTcBAAYNGoz77puHp556CpMnn4+HHrrPsx1z5tyBM888\nG/PmLcDNN9+O2277cf53H330Ie6++z7Mm/coHnlkHjo7O7F8+Tt46aXn8eijC3HHHfdgxYrlyGSA\nk076DwwdOgw33jgL8+f/CtXVuTCDxsYmzJ//S5x++ng89tgvFfQcQSQTXXbUrGFA5o0xp5Ag3cKH\ndLMnbWj1JBzGX1wHH3wo7rtvDh54YC6OOeZ41NfXYdWq93HZZRcCALq6utCnT3P+/C996WQAwJgx\nY7Fjxw7s2LEd27dvx80334gNGz5BZ2cXOjo6PNvxj3+8jg8+WJ3/d1tbG3bu3IlMJoNjjjkOFRUV\naGhoRFNTb2ze/BmWLVuK448/CZWVlaisrMSxxx5fcD/r9vOJJ34RAMDYULz00vOe7SOItKBTSsZL\nzhid106/ddLBePLF9/PHZa/T4YlTN3vShFaL8JUTxuKK+xajpXUXgL1/cQVh//0PwPz5v8Jf//oq\n5s27H4cfPg6DBx+MBx+cL32Pn/3sQYwbdwQuuOB7WLaM4+KLz/dhSRYPPfQoKisri35TUbH3WFlZ\nGTo7OwFYdd7CRdeqN1dV5e5RXm5cTxBE3FjDgI4a0c/XdXGjmz1pQrvtaNUB5Js2bUJVVRW+/OVT\n8O1vfxfLl7+DLVu24O23lwEAOjo6sHr1qvz5zz//HABg6dI3UVdXj9raOuzYsQP77JN7Wv6///u9\ndNvmRfSII47Ck08uzP975UrucGUGo0ePweLFr2D37t1oa2vDa6+9mv9tTU0NduzYLm0HQZQSlJKR\nSBJaPQkD6v/iWrXqPdx33xyUlWVQUVGJK6+8FmVlZZgz5w5s374dnZ0dOOusszF48EEAgKqqKkye\n/J38i1kAcPbZEzFr1o341a9+jiOOOBrA3qdQpxegM5lM/on1ssuuxF133YZJk76Nzs5OHHbY4bjy\nymts7zF06HAcd9wJmDRpAnr37oODDz4EdXV1AIBTTz0Nd9xxS8GLWaZWQ3srmyCSQBg7agQRFkq/\nrbPZbDbJhZsvvvh8TJ16OYYMGSr8fdSFqXfu3ImePXuivb0dU6d+H1dfPR2HHjoktPbSXnib/Esu\nXn37YH1rgYap+0tEaR47IP3+9e3by/daqt2TMLGX22+fhTVrVmH37t045ZSvhboAE0SaIA2TSAq0\nCJuYO/envq575pmn8eSTjxUcGz36MFx++VWB7Lnxxh+7n0QQBCGJDvHTRCG0CCvg1FNPw6mnnha3\nGQRBELYY8dMGRvx0Erbr04x2b0cTBEEQ6qEc0HpCizBBEARBxARtRxMEUTKUsiZKOaD1hJ6ECYIo\nCXTJKR0XlANaT7RbhOcumYepz1+Nqc9fjblL5sVtjiNu9YTdWLFiOX7ykzuEvzNqBG/fvh1PPfUb\nZW0SRKlCmqj6jIREcLTajp67ZB5WtKzM/3tFy0pMXzwL54+ehAPqB8ZoWTgMHToMQ4cOE/7OyHrV\n2roNTz31JL75zfFRmkYQRAqh+Gn90GoR/nfLe0XHtuzaip++9ShmHTvd1z3jrCc8adIE3H//z1BT\nU4uvfvVLuOSSH+IrX/kqbr55Br7yla+ivLwcCxf+Crfffje2bt2CmTOnY9OmjRg5cjSy2Syy2Swe\nfHAuPv54Lc4992wcccTncfTRx2HnzjZcf/3VWL36fQwZMgwzZtzsq28IopRw0kSTphV7sTdpvpUa\n2m1HqybOesKjRo3BW2+9idWr38d+++2Ht956EwDwzjtvY/ToMQXnPvLIPIwZMxa/+MUTOOGEk7Bh\nw3pkMhn84AeXYL/9BuKRR36NCy+8FNlsFitX/huXXXYlfvnLJ/HJJx/n70sQhD12muiTL76XKK3Y\ni7Zd6jp4EtBqER7SdEjRscbqBpw/epLvex588KH4xz/+jgcemIulS9/Ehg3r8/WEzz33bCxYMB8b\nN27Mny+qJ9za2orrr78ap512Gu699+6CqktOjB49Fm++uQRLl76J008fj/fffw+bNm1EfX09qqt7\nFJy7dOkSnHzyqQCAo48+DvX1vQAU1w0GgGHDRmCffZqRyWRwyCEM69ev89U3BFFqiDTRpGnFXuxN\nmm+liFbb0RePnYLpi2dhy66tAHILsN9taIM46wkfdthY/Pa3T2DDhvX4/vcvxMsvv4AXXvgLDjvs\ncOH5ogVXRGVlVf5nqh9MlCJ+t1hJEyV0Q6snYQA4f/QkNFY3BH4CNoiznnDfvvtiy5Yt+PjjjzBg\nwH4YPfowPPbYLzBmTPEXxpgxh+O55/4IAPjrXxejtXUbgFzt4La2Nn/OE0QKUb3FmrT6w17sTZpv\npYhWT8IAcED9wMBPv2birCcMACNGjMw/4Y4efRgeeuh+jB59WPe1mfz1kydPwcyZ0/Hd756JkSPH\noF+//gCAhoZGjBo1BhMnnoWjjjoWRx99rGubBJFmnLZY/TzlJq3+sBd7k+ZbKeL6dc4YGwJgoenQ\nQQBu4JzfYz2X6gknG/Iv2aTZP7Nv5936PETCTZAFJu76w2HWS47bNyDdcxMIuZ4w5/zfAMYCAGOs\nDMDHAJ7y2yBBUMgEEYQw0i8mTSv2Ym/SfCs1vG5HfwnA+5zzj8IwJm50qyecRqicGhEU2mIl0oTX\nRXgCgF+HYUiSoXrC8qjW84jS5JIzRhdssRJEUpHex2aMVSG3FT2cc75RdE5WNsaGKFm+fuX/QjRL\n+jT0wM9nnBy9QQRBEAHJZPy/LuvlSfgUAP+0W4AN0iy+p/3lgij8G3agWM+b+s1RuHruy6FqxTR+\nySUNvq29czbaVrwLAKgZOhwDr5i29/2ITO6zkYb3I0TvfDQ314f++U4qXp6EFwJ4lnP+qN05SX87\n2o00fBE4EZV/Ij3PqhUbv1OpFdP4JZek+7b2ztloW/5OwbGd1XVY2HwiNvTokz+mes5Hjd3nuLmp\nJ/iHW4qOJ9lXM0HejpZK1sEYq0Xupazf+m2IIAzSkDqQILxgPAGb6blrO85Y90LBsaTPebvPsXUB\nNo4n2VdVSC3CnPMdnPN9OOeh/ym69s7Z4FPOBZ9yLtbeOTvs5op49tk/YNOmTa7nzZo1Ey+++Bfb\n30+d+n2sWLFcpWmpqS1shExQQXGCIEodrTJmWbds2pa/g1XTLseAqZeix4GDIrHhmWeexuDBB2Of\nffZxPC+X7cp+B8Lt935Ic23hMGI/kwzFUutF0PGoGTpcuB29qPnEgmNJn/N2n2O77eimumqcd+vz\n+WtLcZ5rlTtatGXT0dKCT+6d4/ue69Z9grPPPgM33XQDzjnnW7j++quxa1c7VqxYjqlTv4/zzvsu\nfvjDi/HZZ5vwwgv/DytWLMdNN12PyZO/g127duGRR+ZhypSJmDjxLMyYMaPg3rIvg7/++t9wwQWT\nMXnyObjhhmuwc+dOAMD48afh4Yd/ismTz8GkSRPw4YdrAAAtLS247LIL8d3vnonbbvsxxo8/DVu3\nbimoLXz//XOQyWTytYW/853xuOmmG3z3U9zYlZkrxSdlKj+nFyrGY+AV01DRtDePc0VTE8bcdy92\nNw/IH0vDnLf7HN956YlFx/v3qcGqddtKfp5rtQiHxUcffYj/+q9v4Ze/fBK1tbVYtOgJzJkzGz/+\ncWFN4S984UsYOnQYbrxxFubP/xWqq6txxhlnYd68BViw4HG0t7dj8eJXPLW9ZcsWLFgwH3Pm3I/5\n83+JIUOG4vHHfwUg97Tc2NiE+fN/idNPH4/HHvslAOCRRx7CuHFH4he/eAInnfQfJVNbWKQVlyKk\nj+uFqvEYMPVSVDQ1oaKpCQOmXgpg75zv09AjNXPe7nNsPU7zPIdW29GiLRvzhPVL3777YuTI3GQ4\n+eRT8eij87Fq1fu4/PILAQBdXV3o06c5f775Cfdf/3oDv/71L7BrVzu2b2/FgAEH4Nhjj5dqN5vN\n4p13lmHNmlW44ILJAIA9ezowatTeiXniiV8EADA2FC+9lNuWWbZsKW655U4AwOc/f7RUbWEA+drC\nRoGIpEHp9Yg00+PAQTho9t0Fx4w5n/S3v83YfY7p8y1Gq0V44BXTsGra5ehoyf2FVNHUVDRp/WDW\nZrPZLGprax1rChvn79q1C3fdlXtabm7ui8cffxRtbbs9tz9u3Ocxc+Ys4e+qqioBFNcFptrC8ROX\nLivS1QCgqa5acHZwSlV/lvU7yPsKothgGRxjil3s1QmnOGi7ed7SugsX/+RltLV35M9Lgq9+0W47\nWrRlE5QNG9bn6wc/99wfMWLESGzZ0iKsKVxTU4MdO7YDAHbvzi24vXo1oK2tDX/84x89tZvJZDBi\nxCgsW7YUH3+8FgCwc+dOfPTRh47XjRo1Jl/X+PXX/0a1hWMgTl3WqqsZrFq3TbkNpao/e/Hb7/sK\n+RdNs1kgm82/aNr+wRrP1y29aCo+W/FeosapoI+zxTbbzXMA2NHekShfg6DdImxs2Rw0+25lb0Qf\ncMCBeOqpJ3DOOd/C9u3bMX78BNx882148MG5+O//Phvnnns23nknp0OceuppuOOOWzB58ndQVVWF\n0047HRMnnoUrrrgYo0cX/uUr8/ZzY2Mjpk+fiZkzr8OkSd/GBRdMxocffiA4c+/b1Oee+328/vrf\nMXHiWXjhhb+gd+8+qKmpLagtfP/99xTUIybUErdeZfeUpdqGuP2MC69++3lfwe+LpmmJKZbpY6Nf\n3dDd1yBotR0dFuXl5bjhhpsLjh16KMO99z5UdO6JJ34xr9MCwJQpP8CUKT8AUJi157rrbnRs01yR\n6fDDx2HevAVF5zz55O/zPw8dOgz33PMgAKCurg533TUX5eXlePvtt/Dvf7+LiorcUN14448L7jF2\n7OfyP1PVpvRwYL96ZABh3VwiekjPDAejX+1qRJcCJbEIq47XDZsNG9Zjxoxr0NWVRWVlBa666vq4\nTUoEKjWzOOKWrfZHYUNa47PdtNgo/Pb7omlaYoq99LGdPux2XRpQujqVYu7o666bhnXrPi44duGF\nl+CII46K0jQlJPkNTZnc0179i7JmrZ39HZ1daG3bI2WD3/FLQm1eL76J8jQbi59Z4orCb9kXTa3+\nia5LwjhZ8WKz+dxMBvlqa0nwNfTc0YQ9//M/s/HII78u+C+JC3DSCUPbjDJu2c5+AKHbkLb4bFkt\nNgq//b5o6hRTnKRx8hIHbfZvyteGJ85Xv9CTsAeS/KQog47+yW4x22lK5r+idfTPQMZ+N3T2Lyiy\nvt2xcAlO+39zhF9sMiGPKiQNP/dI89gB6vzTNUyLnoSJVOIljGTYoKaiY0n6Kzrp9uuAMV/W9Oxf\n9DuZJ1EV4VqlGvIVBWntW1qECW3xssWc9NzTSbdfB4z58vh+/4lt5TX549sra6VCHlVIGqUa8hUF\nae1bWoSJ1JBEzcxM0u3XiUX9v4Bt5TXYVl6DPx305bjNIQhbtAtRenrhUqzt/otn4KAmnDZhTKTt\nP/vsH3DEEUe5ljKcNWsmjj32eJx00n/4aufhh3+KMWPGYty4IwuO/+tf/8DChb/C7bffjSVL/onK\nysp83uugbeqIk8bjNYwkibGcVv+TZr9OmOfLhh59cP/g8Z7+oHFKo3jHwiWO+qMxjna6fhx/VLnp\np+Ywro1NAzG/9xdsz/XbhkrSGk6n1ZOweQEGgLVrWrDgvtewMcI9/2eeeRqbNm10PS9oveDzzju/\naAG28q9//QPLlu3daklavLMbbhpP2rdo06pxxUXQ+eKURtFpbMzjaCWuOes2t6ypMZs3f4QfrP4N\n+rZ/Jj0Po56/af0+0GoRXiv4K3RH6248u2iZ73vGUU94+fJ3MH16LjnAK6+8iP/4j2PR0dGBXbt2\n4cwzvwEg91T74ot/AQD87W+v4TvfGY/Jk8/Byy+/CABYv34dfv/73+KJJ36NyZO/g6VLcyUK33xz\nCX7wg8k488xv5K9PKl7S2qXhL14radW44iTofHFKo2g3NqJxBHKxrnHNWbe5JQrj6tXZlk+NKTMP\n45i/afw+0G47Ogw++uhDXHfdjRg5cjRuueUmLFr0BF555UXccstdaGxsxF/+8mc89ND9uPbaGfjt\nb5/E1KmXY8iQoQCAM844C+eeOwUAMHv2zVi8+BXXUoaHHjoEK1dyAMDSpW/ioIMOwfLl76CjowMj\nRowCsPdJeteuXbj99lmYO/en2G+/gZgx41pkMkC/fv3xjW+cgZqaGkyYcA4A4A9/+B02b/4MDzww\nH2vWrMY11/wwVVvTIpK4xUzER9D5ojKNYmNddeKf0nQjjd8HWi3CAwc1FT0N19ZX4ZQzRgW6b9T1\nhCsqKrDffgPxwQdrsGLFu5gw4Tt4880l6OrqxJgxe2v9ZrNZfPjhGgwYsB/2228gAODLXz4Fv//9\nU6Zz9t43k8ng+ONzqesGDRqMzZs3++wRPQii8egaL2iHyF4dNS7d+tWpFF7ROXC3Wba0YNCUiyrH\n0c+YuNkkSo25rbwGi/p/If9vOy08av1btzmpGq22o0+bMAa19Xvr49bWV2HiRcegOeBfk3b1hI0M\nV48+uhB33TW36HyjnvCsWbfj0UcX4swzz8yXN3RjzJix+OtfX0V5eQU+97kj8dZbS/DWW0sxerR1\nAll1Xue/vysrKwt8STJ+NZ6kaal29n7rpEO00rh061e3UnhebfZSWtDL3AxTq/Q7Jm42DbxiGiqa\n9samb6+sxf2Dx2NDjz4F97G2F7X+rducDAOtFmEAOOWMUaitr1LyBGwQRz3hMWPG4oknHsOoUaPR\n2NiIrVu34qOPPsBBBx2cPyeTyeDAAwdh3bpP8vWGn3vuT/nf5+oH7wjguf740XiSpqU62auTxqVb\nv8rY48Vmr6UFvYxNWOMYZEzcbDKnxmyacpGUFh61/q3bnAwDrbajAaC5Xz0mXnSM0nsa9YRvvfUm\nDBp0EMaPn4Ajjzwac+bcge3bt6OzswNnnXU2Bg8+KF9PuEePHnjggfn5esK9e/fxVE94+PAR2LKl\nBWPG5J58DznkULS0FG8fV1VV4aqrpuOqqy5DdXUPjBkzFp98kluQjz32BFx//dVYvPhlXHrptKI2\n0/C2dBo1Hi+Uuv8642VsdBxHN5uM2u0Gdx5unz7VDdK//ZP63NHr1n2Cq6++HAsWPB74XpTfVQ9k\nKiaJUO2frFbl116vBPUvKjutbdr1oYw9XmyWra4UB3ZjJ9sHqjRTt/ai/uzZtddUV43V67YB0EMn\nptzRLqThiZHYiw7xgl60Kh3slSFqO1XEiXux2aqDGgUd4l6AnXDzT7Vm6tZe1HNE1F7/PjVYtW5b\nanTi1C/C/fsPwKOPLgzt/tddNw3nnnt2wX9vvPG30NojcsStpXrVquK2VxYdyjeK4sSdSuF5sdlv\nacE4cfIvjhKeUc9la3tp04lTvx2tkqRs1/qF/JNHRelB1SRt/Lz0YdJ884pf/3SchyLS/tkLsh2t\n3YtZBBE1YcRhOt07LXGPQf3QKU5aNn5YN7zmu/bip3l8J29+Ac0ta6WuCxud5o0K6EnYA/TXeLIR\n+RfkZaQr7luMltZd+Wusf4WL7l1RnkFHZ+Hf8apefopy/FS9xOXWhwZh+qbDC1tB/DP3oRXzmHjx\n0zy+Z338HAbvXCd1nR2qx0923kRFqC9mMcYaGWO/YYwtZ4y9yxg7ym9jBKEbYcZhiu5tXYC9tKcT\nqnQ5HbRyr/HDuiGb79qLn+bxHWRZgJ2uiwod5o0qZLaj5wB4hnM+njFWAaA2ZJsIIhHoGBuaNKgP\ng6My33VSSNO8cVyEGWMNAI7nnE8CAM55B4CtURhGEGESRf5bkXbltB3thl8N1u66IJpuVLqcoWFy\nhKdFivIoh/32tLXvb7v4BE/Xi7RdP/mi7fw032tNz/6229FOPiX1XYeocdzHZowdBuCnAN4FMAbA\nPwFcyjlvE51PmnCyKRX/RHqmgWp9SaRd+dGzZDRYL5p3U101VnUnO7C7nx/fVBKlVrtq2uXoaGnJ\nt2HOJKUa0Zj0aeiBqd8cJdX3Tv0y/Q8fO46JFz/N4zv1g0Wo27PD9jq3+Zn275YwNeEKAIcDuJ9z\nfjiAHQCu8dsYQehAlPlvRdpVlPmy7a6zLsCy9zMTti4XpVYbZfywaEw+29ou3fdO/eIlX7Sbn+Z7\nNU25yPG6tMXuRombJrwWwFrO+Rvd//4NXBbh5ma9sgCphvxLNvcsWmarm/Xu1QPjRg0I3MYND76G\npe9tBACMOaQZC2Z+peD3zc31WOC1nQyEBbbKyjIFY1Y0fjbX2WG9nxO+/PAAtzleVpbBhrl3Yetb\nuQIsDaNHYeRNNwZrrHkU9v/5z4LdQxbJsbTDqV/GjRrgPCYe/Cwa35M/b3+yhE8i396e8aPA42j9\nvN18gdraA2Hj+gjNGHsZwPc455wxNhNAT8751aJzaTs62aTdv3sWLcObKzcKf6cqTCis/Ms6bkeH\njd22a0VjE9q7q56Zj+uQA1qGMLej4/Lfz3a0Cj/iyHcuIuzc0RcD+BVjbCmA0QD+x29jBBEnxl/L\nVjIZKMt/G9a2nN+cvXbXXT9pnPb5rO1yPbevWV10btwhM14QjcnPZ5ws3fc65sD2Mz9VyA1p2AZ3\nXYQ550s550dwzsdwzv+Lc05vRxOpoq5nZdwmSOFXg7W7LgmxloaGWdWnd2JyPcsQtO91zIGdhPmk\nIyWRMUvVq/Np365Nu3+i7WivW1ducynO7THz+EUdLhJ2e83N9bh67stYvqYFZ338XFECCWMx2vSb\nJ6XTMqpIVZmE7xYdUnJa/btj4RKMXvyE7TiW0nZ06hdhlYOU9kWqFPybOPOPvsNqZOdSXCn1nEKw\nwvxiiqI96x9QF67+DXp15iIlje1YLxqjbnpkWJ89XfRj6x+IRr+ZxxG9GsHu+onne+uQwpLqCTuQ\nBs2AUEeQLTPZuRT3tlzUcz6K9qx6/qL+X8C28hpsr6zNb8d60RhLRY/UMSWnud+McdxWXoNF/b/g\n635xf96CQlWUiJIiinR3aUqppysbevTB/YPH5558EvBGNCHGGEcAaKoR5792I+mft9Qvwnalvprq\nxANOqdf0Je6x0amEmlNfRG2n17KORjhpBvbjaPVvzCHNtnq+gZe0jEFSVapMeeolLacfbTeOlJxu\n2M2XC7a9DD4lF8Mcd7nEKEm9JgzYl/qy6jelnnpNZ/9U6G8q/NNBf7LrixnfOwoN1eWx2OmnrKOB\nzOewT0MP7N7Tida2PbZtAN7SMvpJVaky5WlUGnaUKTntsH72rPPl8vbXtNCu/UKasAt2f5la9Zsk\naDylii5jo4P+ZNcXP57/9/y/o7bTT1lHA5nP4Wdb2wHA1ScvoTt+wnxUpjyNSsNOQjiTjtp1VKR+\nOxrIaQYes/cRhJCk6E9R2xlFexXlZa5t9DhwkPSTnpdz3Wisq9Yq0YkZlX6qwjpf7FJxlgIlsQgD\ncrqVTpofUUhUY+O37F+UerVdX1w/2SG3rw9U+OSknxrIfA6NtI4iooyDVTkPRXpta3kNFtUeg94L\nlxT0tx9t10u/iM61u97Pfd00bx2166goCU3YQEYnczpHZ81UBbr7F1TndPPPb57lOBIGiPpC5fip\n8MlJPzV+hO2qAAAgAElEQVTfU+ZzuGDmV4S+xREHq1JvN+u128pr8m8KG/c297cXbTeo3pypqEC2\no6Poei95u72OjQ7atV9IE5ZERifTQfMjxIQ9Nn7L/sWhV8fVF158ctKB62sqlXwO49ASVfa9ode2\nVhTHyVr724u2G1Rvti7AxvXWBdjrfZ3GRkftOgpKZjsakNOtkqL5lSI0NntJcl/IPD3q7J9K2wy9\n9rzbnkfW5aUVHbVdlaTdPztKahFOEzpplKqJy3Y7vc9pO9rpuqh2UrzE38piF1/f0roLF//kZbS1\nd+TPs2snin6JSksMqq+6IRMH7YWgMdNetqOB3BPu2jtnF/hayjqvF0pKEw6KLpqpm17nV8/Twb8w\n9VUZ/+z0PjcdMK74YS/xt16xi6/30o6qfnEau7C1xCjieYPmNRcRNGba7nrzcStWX5Os83qBNOES\nw02v0yWm1g9x2+637F9c7xJ4ib/1iuGTG07tRNEvYWuJUcXzqu6roDHTdtcbx0VYfU1rKUqV0HY0\nQZiw0/vcdECdNUy/GD6dd+vzvmPso+iXtGiJqvsqaMy03fXGcT7lXLgJ2ca5Ouyy6Uqsi7Bf7U9l\n/KLMPfLnZoBhB0arr4rsdNPa4tYog5Bk2+PATrsFnPM3G9fKzGWnNuzaSRNR5aROGna+VjQ25RZo\nhBe3rUONZFXEpgn71f7Cil+0u0ecRaOd2r5n0VvKNUpd/loNS1/VxT/ViLRb2fzNsnPZ3EYms/cB\nKCr9O+6xCzsnddz++cXqa1W/AcKFecQN12Fnr2YlbepSI9lMIjVhv9pfWPGLdveIU6N0altXjVIF\nSbY9Doz+aqircoy/DTKXzWMy5WvDS258ws5JnVSsvtpp4stn3aKszbTlmSZNOKEkQaP0KxvoYHuS\nMPorzKcp65gcNaJfKO3ohHXL0zVDleS5aSItenycxPYkPGxQ8dt1Mn9Z+73O7z1UtOeXONsOirH1\nmUWucMa7a1pwxX2L8cH65G25pYUkz6eoyW95ZrNANou25e9g1bTL0f7BmkDnpp2aocOLjlU0NWHY\n9GtDbyOpuw6xLcJXThhbEP5gaEtu2pTf6/zeQ0V7fomz7aDEHWpEFJPk+RQ1UYUlpY2BV0wrCF8y\nNPG6gw8KvY0k1B0WEWucsF/tT4Vm6OUexrl9GnpE/tRA+iihEppPRNhEoYmnSXenjFkeUKW5mbXS\nmh4VUikArdeFkc5Rtyo8Qdu39lVS30CVJc3+Re1bFFmyzKR57ADv/qkooxglQd6OpkXYAyo+KG7l\n3eIMlVL9RaBTKsem+mrM+N5RaKguj8SGOEjzF3kcvoUdlmQmzWMHePPP7o8aL2UUoyaRIUqlilOa\nQUDPUCm/6JTKsaV1F348/++R2UAkHwpLigc7jd1LGcUkQSFKRGhQqBGRZIKmfSQIGZQuwl+/8n8j\nT+uoAjut1Xr8totPkD7XS3k3M06hUirTOapOGapT6US7vrp+8udjsihedNXRrLjNoSj88NpGUvrW\nC2H5ZL5vWU0NutrahG04pcMUbUdHkSYzTJRqwl/74e+yQLQv4ATFTj8U1ZCtrCjDno4uqXNly7t5\nSQGoSmP1q5l66au454Cor0pRd9MxxZ8It3ceNsy9C1uXFkovqv3w2lcq+1aXuRnWfBGNn1MbMmUU\nndJkRj2/Q9eEGWNrGGNvMcaWMMZedztfd63SjJ1+aF1UABQtwE7nypZ385ICUJXG6lcz9dJXcc8B\nCsXJkZQYVrd3Hra+tazo96r98NpXSelbL4Tlk2j8nNpwK6PoliYzSWMgux2dBXAS53xzmMaUCn5T\nAJLGKg/1FUEkF7cyimnCiyYs/bjt9vThpv1EqS/a6YcqtqOb6qpx3q3PA/AWD+yXoLr05q3tuGPh\nEtvxEFUOdduO9mpbGMRZijIoQfW5OErrqSqXaJ5DDaNH2W5Hq0K2r/JjIqilK2uTdVybb70pgOXq\nCGu+iMZPtg2nz0AaSkdKLayMsVUAtgLoBPBTzvk80Xlf++Hvsm5apZv2E0eSBzut1Xp8wcyvYOLM\nP0qd279Pja94YL947TdR+TvRdU5xzU7+m+eAruUgdX9nwas+Z6crBo1h9YKqconWOdTcXI+///f3\nQvfDra9EY2Iga5PoHlV9eqPfhZdoodOHMV+s42d+GcapDZnPQJTz244o4oSP5ZyPBXAKgIsYY8eL\nTpJJ6+im/cQRD2unH4qOy57rNx7YL177zbDXzTY7PzIZuPaVX9tUksT4agNVeleUMayqyiWKvkd0\nSIcoGhMAQCYjbZPoHrs/26yNjhlWP5vv2++8KVJtyHwGkh6jLbUdzTlf1/3/GxljTwE4EsAr1vN+\nPuNk95tlANG+ZllZBs3N9e6/D4Hm5nosGDVA6vi4UQPkzrXxw4xSnzz2m2Hv16/8X9Gumut49O7V\nA+NM/tr1oR/blBJn2wHhNsedbBcebx6F/X/+M3WGORGgvx3nEID9x0Xgh0tf2Y1JVe8m7D9ulFQT\nfsY1UkKaL9bxO/g09/VCqq+inN8h4LoIM8ZqAJRzzlsZY7UAvgzgR3bnXz33ZUc9aNiBYu1n6jdH\nYePGVsffu907bLyEEYj8MGP2OQhueq1bvwUZjyB9IbqHX/3TSYNUYb8K/Phmp3f1u/ASoe06hLmE\n1d9BfFP5PoLXMZG9R1Wf3ijr1YjFp4/Pn+MnX7Kucct+x09Ff+uO6z42Y2wwgKe6/1kB4Fec81tE\n517/wOLsmys3FhwT6UFu8a6i3+ug7XmdSH7jgWWR0Wtl+s3PeHjF7R5+4xNV+Bc2QWIvvehdOizC\nQDj97de3ML43VGiQ1nvUHrC/8MUzL/mSdY4JDzI3ddB83QhVE+acr+acH9b930i7BRgAlr63seiY\nSA9y035Ev0+ituc3HlgWGb1Wpt/cSjVGUTrSr/6pwr+wCaLtJlHv0ilGO4zvDRVjYr2HXRy0l3zJ\naYiZFZHEz4AXYskd7RbDmZYYT7/xwEFprKv29Fe+YafdX6sqxiPOMXXzT2eSGBeZls+vHSrGJInj\nGhdp7yuli/CYQ5phtx0dFKd43ihjcd1QoT8Fife19rfqnNN+7JTBb7xfmP75xarL+fFNV20vaeg4\nP0TYxUE7bUcbqIhbVgHNWX8orydsF0ergrhjcd2epFToT0Hife36W1aj8/KkqJPWFoZ/frHT5bId\nHehsbc3/28k3v9peEp/0ZQniW9zvBMjgFAft9LlQEbesArc5m+a5CWhWTzhMPSjuWFw3VOhPfuN9\nnfo7jDHRSWvTSYO00+UASPuWVm0vLnSaH07I5ks2oyJuWQU0Z/2jXBM260GqUxWmWWtyCjVyQqZP\ndOs3u20rL9qP9R53Btj6imIbLVNRkfdNt2073exRjW7z3w6V+ZIrGhtjfyOakEP5k7CBsV2ZRS52\n/901LbjivsX4YL26LYlhg5ocfx/1X74ie2RsMPeVCB3/gvfra37bKpsFslm0LX8Hq6ZdjvYP1ki3\nreIeYdwLyC1iVsxPMDLtud1DJar9J6IlyrmSBDuSSGiLcBQhRVdOGFuQejFj2pU3tJ8o8wNb7ZG1\nwWlbPQ4/ZPDrq4ptK5VbX6q30QZeMQ0VTXv/QDF0OeOpRKY9t3uohLYRk02UcyUJdiSR0BbhqAg7\nFjeIPUFtsOZn1o2kaG1RE0YcKUHYoctc0cWOpKH87WjjDTinbE7DYy5f6BfrG36qbNYhGxig7u1a\np37x+uavSK+0u0dFYxPa16wuONfNv6izDIXZnp/xC2JPlFpy2t+uJf+SjVZvRxtYtyvNWPXhKPRj\n1ai02e/Wro649YuXbSs7vXKf8d8qukdVvwG5eEqP2mbU22i6bdv5tYe0ZIJQQ6jb0UHK5emeklK1\nzWnZ2pXpF9ltKye90nqPJKWG1G3bzo89pCUThBpCTVtphAacd+vznkNvSo2khFGoQLe0f1GnxdMt\nDZ9u9hBEKRFJ7mi31HFJSS1nJok2yxBU5/baL066oijdI5B74lp752zXc1U+adpq0xHG16poz3yP\nspoadLW1+bpf2P2tkrTHQRPJJrQXs6xEUS4vbKwvFyTBZi/cs2iZbe5vL/q0bL/IvBRkTtlnxelc\nUco+vy+HiOzMVFQg29HhaI9KZPrKzT+nFIei+7kRZYk5lWOnS3k/M2l/cSnt/mn5YpYVP+ULdSeJ\nNjshW4rSDdl+kdEVDb1ShN25qp/IRHZaF2CRPSoJK746yP1007ZFkHZN6E5kpQzTWL4wiTZHgcp+\nMfRKPuVcYZUY0blENFB/E0RwYqkn7AWV8cNzl8zDv1veAwAMaToEF4+dosTGJOHUn6JSlEDuafiO\nhUuUx2570RXj0CCdSsQ5bUcHbg9y+rjX9uw0dvP9Khqbcn/wCGyQsVM3kqRdE6WJ1hmzVMbizl0y\nDytaViLb/b8VLSsxffEsfNi6VrnduuLWnzdfcIx0bLcKvMSoRh1fWxAHa6GiqQmHPvgzpfa4xd2q\n8N96D3OeV9lY66TFB+sWl00QVrRehFXG4hpPwGa27NqKn771qC/bkohMf8rGdqvCi64YpQYpUyJO\npT1e9HFV6TD7nTfFc6x1EjXWJGjXROmi/XY0ES1Rx3Z70RV10CDNJeKSGF9svUevo44Japb26DBv\nCMIOrRfhILG4Vu1zyJBDsKJlZcE5jdUNOH/0JHUGa46X/kxrHLQsUWmJTrpz1E9uMj6r7pck6csE\nEQZab0f7zaks0j7XvDYcdRV7r2usbsCsY6fjgPqBIVmvH176M035rP0QhZbopjtHrV3K+KyyX5Km\nLxNEGGi9CAP+YnHttM/dKw9HY3VDyT0Bm/HSn2mLg/ZK2FqijO4cNTI+q+qXJOrLBKEarbejAbUx\np2XtjZh17HQl90oqXvqz1OOg49ISzbpz1Mj4TBorQahD+0XYD6WgZ1LMsz900iBLIYZVmKvaIelK\n2vwnCDe03472Q9r1TIp59sfbM36klQaZ9hhWq+bbtWOH6wKcJv8JQoZULsJAuvVMinn2x9a3lhUd\ni1uDTHMMq1uu6gJi1MEJIk5SuR0NkJ5JJAPSV3PEqYMTRJykdhFOI4YOnBWk0SjlN75laRg9CluX\nFmb88voEqpOmHDZBfXXLVW0gGgNr28233uSpbYJICqndjk4bZh3YSinGPPth5E03BtJgSymuVYWv\nTrmqDURjIGr7jclTUtnPBCG1CDPGyhljSxhjT4dtECFGpAMDQAYZegL2QBANtpTiWlX5KspVXV5f\nj/L6etsxELW9+7PNqexngpDdjr4UwLsAEvl6cZrDeRqqe6XuCTjMLV9Dg11752x8+OMfhdKGmbRt\nX3e0tGDtnbOL/LDzsxRzVROEF1yfhBljAwGcCuBnAIr3kzQnLeE8Q5oOKTqWRh04ii1fv23UDB1e\ndMzpiTrJ29ciXw2sfqj2U9R2VZ/e9PY0kUpktqPvBjANQFfItoRCWsJ5Lh47BY3VDfl/p1UHjmLL\n128bXuN6k7x9XaTnWjD7odpPUT8fMX8evT1NpBLH7WjG2NcAfMo5X8IYO0nmhs3NydixLivL+LI1\nTv+uOeFC3P7qAwCAq477AZp7q7cl7vHjNsf9jpeV5ub6QG30vOE6LJ91CwBg2PRrUedwfti+iFB5\nX8PX3Z9tFv7e8CMMP639DMQ/N8OG/CtNHLeXGWP/A+C7ADoA9ADQC8AizvlE0fnZbDa7cWOrdONR\naLXGdrSZxuoGNFT3wofb1npqu7m5Hl78Sxo6+Jff2jRhbPl6eRISaZSGf6racGsvjHacMI+fSi3a\nzY8o/NRhboYJ+Zds+vbt5Vuqlb6QMXYigCs556fZneNlEbZbHM8fPUn5Fuv0xbOwZdfWfBv9avr6\najvtE0kX/1ZNuxwdLbnc38aWrxfsFoURN1yHnb2albQh096AqZfik3vnKGvHjTD/yHDrL5X9KUKX\nuRkW5F+yCbIIe40Ttk/86pEotdrzR08qKGGYFp04rQRN5WinURrbmyrakGnvk3vnxJKWMgwt2s2P\nNKffJIgwkc6YxTl/CcBLIdoSGgfUDyz5EoZJIopUjlGli0xLWko3P9LiJ0FETWxpK4c0HWK7JRxn\n22adumdFD+zsaM9fc9OXfxi6bbpjp+PrFIttVyJw2PRrsTPC9qJ6IjT0X95tS9z2EHvR6XNhRWfb\nSgmlcb9eX8yyarVRPq2K2hbp1GZ692zElJETUxcWZOCm2zi95PbBto+Kjoeh78si0ijD1KXC1kTt\nsNN/sx0d6GxtjdyesEiipujlvZeo/YvynRwgmePnhSg1YaVYtdq427ZLDWmweeeWktaN7bR06wJs\nHI+zr6LWKOPSRO30XwCk0caMzu+e6GxbqRFrFaU4tVrSidNN1BqlbppopqJCK3sIghCTyFKGYWkZ\nIq3YTO+ejaivrMfU569W3nYSsNPS7bajG6p7lWxfRYVducCKRvtsV0Q0xPneixs621ZqJK6UYZi5\noK2pITMmybyxugH79eqHD7Z9lPg81H6xS5151biLi473q+lb0n0VFXbpJdtXr0pMnuq0onOqWZ1t\nKzUStwiHrWWYteKJw88q0I3f3vDvUNtOAnY6PsVix4ed5puUPNVpJs73XtzQ2bZSIpHb0WFi1YqP\n7Hd4jNboh52WThp7fPQ4cBCQyeSqGBFaofPnQmfbSolYFuEgmm6cWsbIfYdg2YYVRce37NqKuUvm\nkeZpIqmaU1Lr/1JscDAoZpaIi8i3o4NqunFqGTecdGlB22ZI8ywkiZpTkuv/DrxiGqr69M7/263M\nIrGXtNQcJ5JJ5IuwCq1Qh/hiEaR5FpI0zSnJ9X+BXMk/ig32Dr2/QMRJIjVhHeKLpz5/NbLq6lmk\nEtKcoqXu4IMoNpggEobSRfisxy901VN01Ar96EFB/IiqjrJsG27nJl0vs+ZWttN5k6SrJlW71hEd\nv5OI0qFc5c2Gjx83c1P7Zrz2yes4tOkgNFT3Kjrn8/0/h9c+eR3tnbsA7NUKRedGgTWHqpP9tbXV\naGvbDcC/H17ai8Int3OjsDdMrLmV92zaiK2vvISeQ4aiorGx4NxexxyLra+8hK72XNEOQ1e1nhc3\ndj41jhqJjuraGC0LD/NnTzU6fCeF6Z8OpN2/2bNv+ZHfa0PRhN30FJ20wiB6kB8/otCfvLThdm7S\n9TKvOm8S6uLK1EsmvKHTdxJRWsSiCYu0QqcSgkG2UlVg14abH6JSf3Y6sl2YU1j+udlTquiWAzpM\nki4zqITeX5BHh3mjgw2qULodPWL8uJnAXj1FdjvHuuW5p6sj/3OQrVQZ3t+yBpvaNxccM9uvYmv3\nn58uxftbV7vaomor2KtPVsznut1Ld3auXIk9mzYWHDOecnXbZpbFzqfh118nvR2dNJkh7duZSfHP\n77xR6Z+Oc1er7Wg/8aBuJQT9bqXK4BbPqmJrV1Tqzw4VW8F+fLI7N4nxvmasuZXTED9r51PdwQdJ\n3yPpMgMRDzrMGx1sUInSRbh3z8ZE6ilp1IP8+JRBRnhu0vvH0Hmr+vTWVuf1ShK0a4Ig3FGqCT/4\n9VuwcWOr5+vcSgjaffmrCi1w0oNk25i7ZJ5QX3Ur9Sc6btw7iH9+fLrmhAtR31lckUeFXqZawzHf\n7+yX27HPx9sAiMN1DJ23ubne1/zUkaDadZhhOSrDp9Kk/QVFh74Ic97I+pe2kLKM+ynyZLPZrN8v\nuemLZ2HLrq3dRmXyC5qx/Slzndu5fnFrw05jrausxW3H3+h4D7d7h+Wf6L5hLVKi/jE+NH62tc33\n++bzLThg/Z6C3xtPh9Yt5zQtwiK8+hfG3LKGTwH24+GG6nmjM25jp1Nf+Jk3qv2L4nvfC3379vK9\nlmpTytCphKDsdWH9JWS0Ybfdbq+x7h0X2RKAdm2r9i/KLWbVGo75fvtbFmAgWakm4ySMOaAy9Wfa\ntL8g6NQXYcwbr/4lXSIzo03aSr8lBKMILTDa8PqkUVG29+VzvyUAw/KPQjIImgOEH3SYNzrYoIpQ\nF2EdNIwoUKFRqOirMHVXL/ezXmen+W/ZtRXTXr5ROibcwHy/j/pV2m5Hx0WpzHsRKlN/xqH9qZrz\nqq9z+gwluYyqU76CNDzlyhCaJqyThqEKpyfhIBqFir5ScQ+zf37vZ3ddR1cHtu/Z4WqDrM3m/v7e\n7zajti0XW26E64iIQhOOc97ronmvmnY5OlpaADiPhwxRan+q57zq68x9YUX371bR3HTKV6CDzusF\nLTVhnTSMKAiiUajoqzB1Vy/3s7sOyNiWgPTaBlDY300XfF+bcJ1Sm/ciVIZPub2PoRLVc171dWkr\no2r3Lo1dqGRa0UYTTjpp0ijCoKKsXGkJyKL+nn1k4HsSalCZ+tPv+xhppFTKqDZU99L2iT4MQluE\nw9Aw0qq1BekrGU0lylKNbte5xYQD+uhcUZe4jIu0fq68Etac1+W6MBDNHbs6ANaaADr5ESehxgmr\n1DB00JjD/GvcT1/JaCpe+s3qn189zkvsszkmXOSDyvH1Mn5B5ltcMYx+5qcOnysZonoSDmvO63Kd\nSkRzpyJTgY5sh80VhVjfFUmaDmwmVE2YMdaDMfZ3xtibjLF3GWPS9dJUahhp19r89JWMphJ1qUaZ\n60Qx4SLiHN84+i0O0v658kpYc97tOq+atw5zTDR3ZBdgoPBdkSR8VsLCdTuac97OGPsC57yNMVYB\n4FXG2HGc81fdri0VDUMFKvtKlabiV+f2Gvt8ZL/DUzVH6P2A5BLWnHe7zuuTflrmmPGuSCkjpQlz\nztu6f6xCrvzhZrtzRRqBir1/mXv4rUkcFmFrijLnhhlfqFJLjEof0jku001fCyP226nf3dr2apvb\n+V5yTsvW7c4gE3nMfJwae1hzSPZ73QtOn2+38TUfT/o7DVL72IyxMgD/AnAwgAc451eJzrvphZ9k\nl21YUXDM6OifvvVoYA3DSQeRrZEb5AlRR01R5lxZvTkq/+wIW+d68J35sJufccdlyuprTu36zc8r\n0uXcxtfr+Lud75ZzWiaGXVQQRcY2N7z46vdzoULzVjGHZO8r+l4XYX7nQ7YmgJfxVeGfCkKPE+ac\nd3HODwMwEMAJjLGTROe9veHfRccMfUmFhuF0D781icMiKk1R5tww4gvD0BLD1rmc5qeTPSJUzydZ\nfS2M2G+RLuc2vl7H3+18Lzmn/dTtjipmPk6NPaw55OST02cEAHpU9Mhr3rI1AbyMr+rPSBx4ClHi\nnG9ljP0fgHEAXpS9rqwsg88dNAwPHXSrR/MKaW4Odo+ysgyam+sD2hDsehkbvPgpc65xzlmPXyjU\nXc02ReGfm51RY2ezl36LEqd2/dhTVVGBB78u976lm89e+8Q4n0vcL865GfR+cp/76OaSir4wf6/b\nfUZ6VlYXzK2vjjoxUJtebIvjs+kH10WYMbYPgA7O+RbGWE8A/wngR6JzR+47RLjdN2XkRN9bLUE1\nPFV2AN62jOy0tqA2BMHNpqT75zZX7OZnfWU9znr8QgDidwnC9NUpztsu3GPzzi2Y8ee7ivxzGz8v\nfrid67VP7D6fbbt34qzHL8Tp+1bigPW7C35X0dSEfhdeUjQ3/WiRhm0z/nyXsvc0/PSbHSq2o0Vt\n223Xepm7Mj5F8d3iZTs6zu8hr8hsR/cH8Dxj7E0AfwfwNOf8L6ITbzjp0oKtCWPf3+/evKENZLv/\nt6JlJaYvnoUPW9cWnXvx2CkFbWdMcndQO/xgtScOG8K0STf/ZOaKaH72q+mLD7Z9lL+urWNn0T2+\nccgpofhqttlKY3UD5nzhf2y3+pw+C3Z4GTO3c72Ov/V8g/bOXcgii6e+2IjWnnu/joyc06IaxHb3\nssOw7X/fe1b6+8SpvSD9Fiaitq1zyI89Mj5F8d1y1biLQ/EvblwXYc75Ms754Zzzwzjnoznns53O\nV6nrBakx6aUmcVjoEMtnRaVNOvknO1esNsu+SxBVDVWgMM5btS6t8n0Dr33ids7TJzagtWcZdtRU\nuOacdtMiAaCustaTzi3Tnqr3NMJC1HbY7+N4OSdoe2H5FyehZswKil3sqNObdWGS9vy1OvonG3Ym\nM1dE/snEJweZb04hFU6ZwvrV9C24zik1qZN/uiHb31b/b/ryD4W+efmOCOP7RFV4THNzfcFWuZcQ\nSxXhPGGHdyZhbgYhyNvR5e6nyDNz5syZbW273U+U5P0ta7CpvTAk2fhrp6G6l7J2ZKmtrYZK/3RD\nN/+soQp7uvZqP5vaN+O1T17HoU0HoaG6l9RcEfknus7pHkHs39S+GX9e8wI+3bnJsb2G6l54f+vq\ngusqMhXoQpejbbqNnwiZ/hb5/5dVi3FI4+CicfDyHaH6+0Q0vuY56YW73ngQ727a+3qa01yXseGf\nny4t6kPr3LM7V7ZtLyRhbgZh9uxbhO9JyRBaKUMV6KY7EtHiJezM71wJ810Cr2n9jPY+3FasUXZk\nO2J/z0EFMv0t8n/zzi3CbeM49VqV4Uii8DmZ+6oI53EK7XJqm1CD1oswkPz9fiI6VOT9jetdApka\nqrXdGmfSPwuq+zspei1BiNBaE9aNtOsauvkXJAuaSPtSlZXIS/pCPxmMVGRd0iWFqx/NVOR/756N\nqK+szz8lR+GHTNpOVVnjRNncRAxtOrTADhXZpZwyjRnnqM42mPRUk1ZSqwnrRtp1Dd38+3z/z+G1\nT15He+cuAOKtS5FOZaeTjejLUJ3t6dserxqg1f7G6gbMPuFHRcesfoius/PVjDF+XrT0MPGrmYr8\nH9jQH3zzKs/3CtN2v+Mk4pQRJ+C5914VznUzVjvsbDh2wOel5571XNnPmRfM3y0qtXRdSK0mTBB+\nti7tdLLbX30gkC1+NEC/IRVBtk11SeGqMiTIa8rRoPgNeQuCaK6LsNqhIpwnSkmGymcW4iltJUFE\njajsYZIQlZyTKUOXllJ1fkmK/yrt9Fvi084GL3Mv6Z+zJEOLMJE67NLeXXXcD4BO9feN4wUfJ01N\nJkrJhjIAAB7WSURBVIVrEJtl409V9pddytGw+j6MsQ67tKlqwtJtdfoc6QC9mOUB3V5cUk2a/BOV\nRVThX9jlFmWwexnnmhMuRH1nU5GdsiXk/Lbt9LKZihKmQG5ufv9310Ta9yrH2u0lLqe5GcecU12q\n1OqfDp8jlYReypAgkkZYoSg6hLjIaN5haXxey+UlOU1qnCl4w7JDlrB1Wx0+R7pA29FEKglLU0yq\nVhmXxhemZho2uoy1LnaoJI0++YUWYYJQgExMqSp9LSzN2wmvJRf9POGI+ujphUuxdk0LkAEGHtiE\n0yaM8W27+b7W48PePxFln9UAAAYOcm4nadquH+KwNz/WKByDtMUUWyFN2ANp0kxFkH/+cNPPVOtr\nQHiatwinpClG20E1PlEbh/Bj0GNLY8Gx2voqnHLGKDT3kyvYLpPMYtCKI1G3bR+pdoKMpVMf6fjZ\nU6nbuvlnXoANauursHXke1jR+XbBcRXJQ1RDmjBBxIibfhaGvhalpual5KJfe0RtVG8pjpPd0bob\nzy5aFui+1nzJtdv6SLeTNG03CFHaa12AgdwYZP/Rt+h42mKKaTuaIBKIDppaQ3Wv/NOIDvboTtL6\nKGn2JhVahInEE7dm5Kafha2vWfXaDDKJi+sUtbGrcavtdnSQ+1q3o3f0+sx2O9rtfoNWHInabX2Q\nQQZPf7TUl2adNOy0W8dzXTT9gYOabLajPyx6zyEpOwmy0HY0kWgMjS7b/b8VLSsxffEsfNhaXA4v\nLNxK5IVZktPsv4HqfoiipKiojcsvOB219VX5Y7X1VZh40THSerDdfWcdOx1Xjbs4f3zN0NfRUbVL\nqh3z/Qwt2ci1vHZNCxbc9xo2rtdL21WJVbt18rng3KzzuadNGCMc64tPnBj63IsbWoSJRKNLHlo3\n/Swsfc0pT3TS4jpFbZxyxijU1lehvqGHpydgt/taj590+sGora+SetI2rvOiJacFO+1W5LOXc4G9\nY20dg6Rp6V6ht6M9oOMbjCpJon92uXVFb3Mm0T833HILpyEbEaDn2D1w64vC48ZTnBd09E+EF59V\n9o/uBHk7mjRhooC49VWvNiQt/lI1TnmiVcXqekWHORQFIh0TAGrrqoXni7RUFXHQUSAKITKw2z2w\n658drbvx9MKlhf6jUF9205296NK6Q0/CHkjKX6t+ERUWjzomz08cpmw8Y1rHz+y/gapYXa/jH0ZM\nNKDv2C247zXsaC2uwW2NMxYtYmXlGXR1Zh2v0wG3BdjpqdaufwB7/2vrqvHputai40a/2MUUx9lv\nFCdMKCHqmq0iVNXsLSUM/3tV16GuslZprK7X8ddFo48KO/3Yqn2KFjHrAiS6TgfsFuBMxt5/A0Pn\nFWHnv3UBNo4b/eJVa9Yd2o4mEo+feMY0bbsa/uv6tBglUW9Tuj15OT1F6oSffqupq3L1v7lfPSZe\ndAweuO1FuJRFLlnoSZjIM3LfIUXHon66HNJ0SOg2qAhr0iE0SjUq+j6K8bPDS/iMSgYOaio6Zmyr\nOi3AXZniRN9e46BV4NZvdv55sXPwIfsUHSsrL97Bra2vQt/+xQu7uT0V9ugELcJEnhtOujT2mLwo\nYlJp21WMir6PYvzsiGub0i7GVbStarCncifePeJP2FO5M3+so2qX5zhoFbj1m51/Xuz87gVHF93j\n/GknCu97xqTPObanwh6doEWYKEAHfVUHG0oVFX1fiuNnF+MqIossPmD/BAB8wP6JPZU7sadyJz4b\nsTwKU33hxT8v97C7r1t7KuzRBXo72gNp19xKxT+d3wIOQprHz+qbY7iPhb7963HGpM8Fat+PZuql\nMlDvno2YMnKi49zxaoPs+arfNha1m+a5CdDb0QThiaRvu5Y6dhrmUScdJHwT99N1rYG0Yb9as5dU\njA9+/RbpBVjGBi/nq9zetWt33dotnu9VKrguwoyx/RljLzDG3mGMvc0YuyQKwwgiTGjbNbk4aZiy\nIUOq2nNDVSpGrzaoShnpFbt2F85/w/c9045MiNIeAJdzzt9kjNUB+Cdj7DnOub4CBkG4oKJMG5V6\n0w/dXs4xQnSs6DZ37Owkwsd1Eeacrwewvvvn7Yyx5QAGAKBFmEgEusTzEmqwK3tnDmFx+r0TIj1T\nJv2iCsxtV/eowK72jrwdXn2SOT+MmGq7didMPiLwvYF0pas08KQJM8YGARgL4O+hWEMQikljPG+p\n46Zh+tU4vWrN5nOCxiL/4sG/FrRtLMBGGy2f7UDPmsr8MTef3PogrJhqu3b7D2x0uEqOuOLAw0Z6\nEe7eiv4NgEs559vDM4kg1JHGeF4inBAWN63ZbiFWEYu8+r1Njr/f0bobWWQ9+eTUB2HGVIcVPpS2\ndJUGUmkrGWOVABYB+CXn/HdO5zY366XJqIb8SwdlZZlU+ppGnwzMvjU312P4qAGO5zr9XkgGwtSK\nZWVlGD5qAIaPGoCbrnza9pyw+76ysgKXz/hP6fMd+8DB16B+2LUbuH9CtDlOXBdhxlgGwMMA3uWc\n/8Tt/DTHgsnEuq29czbaVrwLAKgZOhwDr5gWhWlKSKN/dqUOp4ycmLq5muZYzObmesyf+2qoeuDA\nA8Xab+vWdsyf+2pOHxacU1tfhZO/OSJQ3w8+ZB+sXmn/NKyiDcC9IpKKNkTIxHnbEZfNUeEaYMwY\nOw7AywDewt6/Q67lnP/Rem6pJ+tYe+dstC1/p+BYRVMTBky9FD0OHBSydcFJq3+ypQ6TTpoX4T8u\nertokQqjfJ1T6T2jvWcXLcufo6pAfXNzPe6c+af8fTMZIJvd266KNoKUJAyKeW56SQ4Sp81eCDVZ\nB+f8Vc55Gef8MM752O7/ihZgAvknRDMdLS345N45MVijnqT6Z8Rk9u7ZSPG8CUWkmYahB8pov2Fp\nnub7fvFrw5S3EaQkoUq8aLu62BwmVMqQSD1U6o+QJV9679YXXc8Jq20DNmJf5W2IkClJqBtJtNkO\nWoQVUjN0uO12bRpIu3+qSGMsY9yINFPjKdGvvmiNxTVfpzrWOAhuebLNfoTlk4xtTm2b8WJHXPHO\nUUIFHDwg8yS1atrl6GjJTYiKpiYcNPvuKExTAvkXHNXJ8L2Q5id9q2Zq6IGq9EXRdWZ9WFZ/9Dv+\ndmMnul9ZeQZdnYLXhAWo8MkOL/1p9c+LHU7nxvl5M0MFHDRiwNRLUdHUlNonxLT7F5S0xjLqgEiL\nVaEv2l2nOtbYD6L7yS7AorZV6tle+9OMFzviineOCtqOVkyPAwcl6unQK2n3j9CXqPMbpzGfsi4+\nebFDF5vDItZFWMeYU5FNxjEOezt19IWIHtW6W9L1rrDxqhk6oeLpUPX4i+7nZzs6DOxyakfRtpMN\nUbSrkti2o/Mxp9kskM2ibfk7WDXtcrR/sCYuk4Q2rbzge6526ugLEQ9R1GZNeq5clXjNkWwmY1Lx\ngoyTF3tU3O/8aScWHDP7EYZPsrZF2badDVG1q5LYFmEdY05FNmU7OoqOWe3U0RciPsKuzZokvSsK\nvGqGQG7BCCMW180eVfeziykOyycZ26JuW2RDkp6ADRKvCeu8DdzZ2go+5VwAQFlNDbra2gCI7TT7\n4XZu1Mj0cdTjoPM2rW4all1f6dyHXvDT3zV1VWAj9g0lFlf1+Ivu5xRTbPUpzHGOK7bZyYakEduT\ncM3Q4UXHvL5xq3obWGRTpqL47xSrnXbXZTs68rZ17dhha6fVD6dzo0amj6Peji+VbdqBg5qKjnn9\na9+urxY9+k/qwxKgVD4rSSa2RXjgFdNQ0bT3A2LEnHrJQax6G1hk06EP/szVTtF12c5Ox7bMdor8\nsDs3amT6OOrt+FLZplWhd9n11afrir+EqQ/TR6l8VpJMrHHCOsacimwyjlX16W1rp46+EMkn6XqX\nDlAfEjoTWcYsL5qh3bn541n71/Odqvp41S2t54+99SYsuWaG1D1EFYdE1AwbAQBS55bV1hZpxX71\nWtExUdYemcpJdudUNDahfc1qR9vc0t65pewzkM1K5LccnpsdXtIl+tXl3O4hGj/Z8ByDvv3rccak\nz3m2LWzSlg3MOpaTLz4uFP/8fFbC0JDTNn5WgmTMimQR9lICz/ELffUqx/ad0ih6LcMnOj9TWYHs\nnsK3pZ3uYU7xWFCbTGB3tqMDna2trucW2GPozg72CP2wuW7EDddhZ69mRz/s+th6TlW/Aa797bZA\niOIhg5ST81sOTzZ1oJd0iV5T68ncw+6Lzqk8n4g40v65kaYvcdFY1jf0wMnfHBFKn3tJERlWGsg0\njZ8I7dNWetEM7c51W4CRyThuA3vVLYXhSnvcw5XMmLeo+503pUA3tt4DgNS5Bfb4DJ+yu275rFtc\n/ZDdjpfpb7cnNFFCgiDl5PyWw5NNHeglXaJXXS7IPZzK84kgzTBcRGPZurU9tD738lkhDTl6Eh+i\nZFDR2KhdYXlrisdeRx2TC1kSPOVmKiqkz40amVSVUaezTHpYQpTIlOcj0gt9VvRG6SK8+PTxwhhX\nUQk8IPdktPbO2YUapY9Fx3j6ctJHncrwia4Tne+0HS2LTF+4neuEKHxKdjt62PRrsdNDW07avd04\ndrS04Mnb/hebsg2u93fa8nVDpGvZlcOrravOL1B2cbRBbJNNreekj6tIzyebAjGukn2lgmgcjO3o\nuLFLRVlbVx2DNaVBucqbTR4ybGZ2z578v/ds2oitr7yEff97MnYsW4qu9vaia/Zs2ojNz/wBez7d\n4KtNQ6Nc//C8gsXGaLvnkKGoaGxEr2OOxdZXXsrb4Had1eaKpiYc/etfYN2fniu6R0Vjo7S9Vjus\nfeFkc0FeOAHl9fU4+M45BfaI/D7knvuFfdE0sB/a2uS0Q6vWbNje+sbr2LmS2163ZMCX8Vllse5s\nda+2vgrnXXY8li/9BHt2d+aPTbzoGNcvBOviuW1LO5Yv/QTfmHAY/v3O+oL7NfWpxbq1W4vOfW/5\npwXHzXi1bcjIfq7nWm3u7OgqsKmzswsVFWXo2NNle4/a2mrH8RPZobqPBxzQGMoXtptvSUI0Dj+8\n8cta1LSz2mawY/vuQOObpvETMXv2LT/ye23ow27ogIZmKEKkUbpRXl9f8NQno0GKtE2n65zClYKE\nIjn1hZPNslqxXXsq/fCr3W/u2V943C6NoMpycgvnv1F0Py9xtIadfmxzO1emLFwW2cChNm4pEOMq\n2Vdq6Bw2ZWcPjW84RKYJG5qhCp3TbzF5r7ql6HwV2qeXvvCqK8vcw+5YnNilEYwiBaAXauqq9r6N\nHHE5tvLyssD3kEmBSISPzn2u01vxpUAki7BZ7/SiUYrCkuye3Jw0XxFOGnRUCTe82uzlOtdYaxTH\nDHMU5q12ymFtZ4NozMzj23vnOmyuGVDwe6fSc15yHTtpuLX1VZgw+Yii427l2JzslCGIzUHb9oOd\nLu1Xo3aLrxbFhouum3zxcWG4S9iQhhKBSUFpnPCrX/+vrFs87ICpl+KTe+cUxZ3axaLKxKgayJ7r\nlEjD6bowYt28+Cd7nZdYa9EfQHZY43y9jJn52KuDz8Ku8p4AiuMW7eIUa+uqi7aIzfGLbgvwxIuO\nCRRHKxuLbMYt5tKtzJ7xMZJtO+j89JLYo7a+Cl2dWexs22Nro2x8tfW+orEOM45WB3SMo/USX+yG\njv6pRJs44ao+vV3jYb1qrV60S9lzbXM1u8Qah4FfbdbpOi96rRc9XkZjtztuPvblUw/yVHpOJtex\n02Imq9faIXMPEW66aRxl9pzwkllLRqOWja+23lc01mHG0RJidNat04TS7egj5s/Dxo2trjGuXjRK\nL9plUJ0zjlhjvzbroOl6GTPrsYljQzcPQKGGa4dbHK3MPVQSZpk9lajQqAl90Vm3ThOhacJ+9c4w\nsOqgOtmmEjedW9V2dJjYaVFO29FO1wWNow3yFODki92Cr+qpw08Mrxd9HMg9tT69cKltHm2v9wPc\nt6MJIm2EFqKkolShCkS1bnev/wTl9XufbOKyTSUFflow/Dtg+gzXUo0Fwbqmn6PqI7vSc2dM+pxj\nSToVJetUl70T3a+pT61t+JOqMnt+a8ha7bWZCgWsXdOCn85+SdjeUScd5J4u0xIbbjfWl8/4z9Tq\nwURpE2qcsA7l/ez0UQCx26YSWZ3brVSjoemb45Kj7iM7LcpNo1KhYanWwWTikgH/urMIFXmma+ur\nCnRp42cRMjm+7aiqLvc11gSRFiIrZRgXdtq0n1hjnd/wU+Gnzv6pQAf/nLahA8cAd/sXZhte8k+b\n2wtqkw5jFybkX7IJ8nZ0ago4WNEhDjhK0qpzJwVZDTaM+Mt82xlg4IFq8kzb4Tf/tIxNlIuaKEU0\nyFaqHhl9NMn6rwhdNPhSxIsGq1p3Lmg7m2u75bMd6FlTqawNMyL7z592oqtPbn771bEJIum4LsKM\nsfmMsQ2MscQE6ekUBxwlOmjwpYhXDVal3mnXtoo803b4zT/tdA7loiZKFZnt6EcAzAWwIGRbQkd1\nHLBT6cQ40CF2OA6kU0N2b9fahdSoaEsGFfGXbtmtdu/qxPnTwkn16JZ/2q6PKO6UIIpxfRLmnL8C\nwFuwX8zUDB1edEz106Eo9GnVtMvR/sEaZW0Q7rhtY4q2a+1Caty2Pu3a6tu/eJs3zLd6ZdJLdnVm\nY9nO9butPHBQcZY9ejOaKAVSqQlHoY/KlE4kwsdPakinkBo/be3YvkupzuuGbAKMOLZz/W4rq9bK\nCSIpKH87urlZjw9Nzxuuw/JZtwAAhk2/FnWK7DL8sytbX1aW0aYP/JA42zMABNlRy8rKcr7Y/F5E\n/hofbU2YfAQWzn8DADBh8hHh9qNKn1TjNh4OnP29zzv2YeLmpkfIv9JE+SKsTSxYr2YMuu0uAMBO\nADsV2GWOdbMLCep34SX69IFHkhjLN/BAcejLyd8cgY0bW4W/twupMa7x01ZFdTnO+cFR+eNh9qNK\nn6KwTdYOpz5M4tz0AvlXuqRyOzoKKCRID9y2Mf2G1PhpKyrsfKpv6KGlbbStTBD2yIQoPQbgtdyP\n7CPG2Lnhm5UMKCRID2TTWdY39PAUUuOnragQ2TFh8hHa2kYQhJjUp61USdq3VMi/ZJNm/9LsG0D+\nJZ0gaStpO5ogCIIgYoIWYYIgCIKICVqECYIgCCImaBEmCIIgiJigRZggCIIgYoIWYYIgCIKICVqE\nCYIgCCImaBEmCIIgiJhQnjuaSB8qaugSBEEQxdCTMOGI3/qwBEEQhDu0CBOO+K0PSxAEQbhDizBB\nEARBxARpwopIq246cJC4PixVxyEIgggOPQkrIM26KdWHJQiCCA9ahBWQdt2U6sMSBEGEQ6zb0VFv\n4Zrbq+5RgV3tHZ7b9mtz1NeppLlfPSZedIw29hAEQaQF34WIRWSz2axs4WbrFi6wV2sMY6tT1J7X\ntv+46G2sXrmp6Lraump8uq616LhxP7++Rt1HboW3o7ZHNWkvLJ5m/9LsG0D+JZ2+fXv5Xktj246O\negvXaQGWbXv1e5uKju1o3Y0d23c56qZ+fdVtm1s3ewiCIJIOacKKIN2UIAiC8EpsmrAo9AXIPVk9\nvXCpcq3Rrj1r2/N/8mpeK7bqxoMP2Ue4HW1sxxq6qUzbMot1VOFB+W3mDFBdba+VRz1mBEEQaSe2\nJ2Fr6IuZMEJ8rO1lbHbwjQXI+vPaNS3Y9Ol29KypzB+TDdfxG+YTRXhQgc6bLfbZPA5RjxlBEETa\niXU72tjCFRGG1mjeMv7i14bZtm1H69Z2ZJH1te3sd7s67G1ur1p51GNGEASRZmINUTK2cB+49cVI\n2zNgI/b13HZ5eZnttrOXtsO+LiyiHjOCIIg0o3QRvunKpws0RbOmavfzwEFNjlqjWaM1NEqv8b5O\nsa0yWrGZ2rpqx/vK2GZ3joFfn7y2LYtI85UdMy8+EQRBlBpK44R/9MPfZ/1cV1tfha7OLHa27XE9\nt6w8g65O+2ascasysa0L7nsNO1p3A8hpxdnu25t/tl4vig2WsU10nRsyPqlq285nkR3mfvNKHPHF\naY9VTLN/afYNIP+STiLjhM3saN2d11rdcFpojHuZdUmZ2FaRVmz8bNeGaDGTsc3rAiyyV+STirYz\nGThq5V70YTdIPyYIgtBkEQb8a60qMHTOiRcdAzZi34KfS4m6Xj3y/sugm15NEASRNLQoZWh+89er\nRivCTpcUteeGXaxuHNvRfvRcL21MmHxE/t9eYpT9jBklNSEIggjhSdgcfyvzszX2VTaed+8J4sNO\nC7CXWFu7WN0zJn2u6Pj50060td3uOpF/ouv+9uIqTwuda7+ZMNroP7Axf8xLjLLMmDmNOUEQRKni\nuggzxr7CGFvBGFvJGLva6dz6hh5Fmqrbz6KnIS/xvFXV5dK6ZCYDX09fhj31DT0KrhfF8Nrpy3bX\nGef0qKlAz5pK2+u8LsAycdBGe3Z94iVG2Y9PBEEQpY7j8xJjrBzAvwF8CcDHAN4A8G3O+XLR+V6q\nKHnFLi7VeKqSiVs1zvVLnG/4eYnLNfvp1m9m0v4GI/mXXNLsG0D+JZ0w344+EsB7nPM1nPM9ABYC\n+IbfxoIwcFBT0TGrluxE0p/ARP6VlRePu9VPt34jCIIg4sNtEd4PwEemf6/tPhY5bhqlky6ZBg1S\n5L9Vgxb5GUX+aYIgCMIfbouwr+QbYeGmUcrosUnGTYNWoe0SBEEQmsAYO4ox9kfTv691ezmLIAiC\nIAg53OKE/wHgUMbYIACfADgLwLfDNoogCIIgSgHH7WjOeQeAqQD+BOBdAI/bvRlNEARBEARBEARB\nEARBEARBEARBEARBEARBEARB5PCdassKY+wrAH4CoBzAzzjnt6m6dxwwxvYHsABAX+TipR/inN/D\nGOsN4HEABwJYA+BMzvmW2AwNQHda0n8AWMs5Py1lvjUC+BmAEciN37kAViI9/l0L4BwAXQCWIedf\nLRLqH2NsPoCvAviUcz6q+5jtfOz2fzKATgCXcM7/HIfdstj4NxvA1wDsBvA+gHM551u7f5cY/0S+\nmX53BYDZAPbhnG/uPpYY3wB7/xhjFwO4EDk//o9zfnX3cU/+Kami1P1lfi+ArwAYDuDbjLFhKu4d\nI3sAXM45HwHgKAAXdft0DYDnOOcMwF+6/51ULkXurXcjKUuafJsD4BnO+TAAowGsQEr86w4ZnALg\n8O4vhXIAE5Bs/x5B7vvDjNAfxthw5MIlh3dfcz9jTJva6DaI/PszgBGc8zEAOIBrgUT6J/LNeJD5\nTwAfmI4lzTdA4B9j7AsAvg5gNOd8JIA7uo979k+V89rkmFYF53w95/zN7p+3A1iOXMrOrwN4tPu0\nRwGcHo+FwWCMDQRwKnJPi8aOSFp8awBwPOd8PpALtet+wkiFfwC2IfdHYg1jrAJADXJx/In1j3P+\nCgBrqTA7f74B4DHO+R7O+RoA7yH3HaQtIv84589xzru6//l3AAO7f06UfzZjBwB3AbjKcixRvgG2\n/v0AwC3d6x045xu7j3v2T9UirE2O6TDofvIYi9wHZV/O+YbuX20AsG9cdgXkbgDTkNvONEiLb4MB\nbGSMPcIY+xdjbB5jrBYp8a97W+9OAB8it/hu4Zw/h5T4Z8LOnwHIfccYpOH7ZjKAZ7p/Trx/jLFv\nICdzvWX5VeJ96+ZQACcwxv7GGHuRMTau+7hn/1QtwlrlmFYJY6wOwCIAl3LOC2pxcc6zSKDvjLGv\nIadvLIHNewFJ9a2bCgCHA7ifc344gB2wbM0m2T/G2MEALgMwCLkPfR1j7BzzOUn2T4SEP4n1lTE2\nHcBuzvmvHU5LjH+MsRoA1wG40XTY6f2jxPhmogJAE+f8KOQeZp5wONfRP1WL8McA9jf9e38U/jWQ\nSBhjlcgtwL/gnP+u+/AGxli/7t/3B/BpXPYF4BgAX2eMrQbwGIAvMsZ+gXT4BuTm3lrO+Rvd//4N\ncovy+pT4Nw7Aa5zzz7qz2v0WwNFIj38GdvPR+n0zsPtY4mCM/TdystB3TIeT7t/ByP2BuLT7O2Yg\ngH8yxvZF8n0zWIvc5w7d3zNdjLF94MM/VYtwPsc0Y6wKOWH694ruHQuMsQyAhwG8yzn/ielXvwcw\nqfvnSQB+Z71Wdzjn13HO9+ecD0buhZ7nOeffRQp8A3J6PoCPGGOs+9CXALwD4GmkwD/kXjI7ijHW\ns3uefgm5F+zS4p+B3Xz8PYAJjLEqxthg5LYGX4/BvkB0R5RMA/ANznm76VeJ9o9zvoxzvi/nfHD3\nd8xa5F4i3ICE+2bidwC+CADd3zNVnPNN8OGfyhClU7A3ROlhzvktqu4dB4yx4wC8DOAt7N1OuBa5\nDn0CwAFIWBiICMbYiQCu4Jx/vTskJBW+McbGIPfSWRW6wz+Qm5tp8e8q5BamLgD/AvA9APVIqH+M\nsccAnAhgH+T03xkA/hc2/jDGrkNOR+1ATir6UwxmSyPw70bkvk+qAGzuPu2vnPMLu89PjH8m3/og\nt1sxg3P+iOn3qwCMM4UoJcY3QOwfgF8CmA/gMORCzK7gnL/YfX6i/CMIgiAIgiAIgiAIgiAIgiAI\ngiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiCIxPD/AROAz3gM8m4pAAAAAElFTkSuQmCC\n",
"text": [
"<matplotlib.figure.Figure at 0x3b08fd0>"
]
}
],
"prompt_number": 6
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"iris_classes = df.groupby('class')"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 7
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"df.boxplot(column=['sepal_length'], by=['class'])\n",
"sns.factorplot(\"sepal_length\", hue=\"class\", data=df, kind=\"box\")"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stderr",
"text": [
"/home/wyleung/.virtualenvs/bio/local/lib/python2.7/site-packages/numpy/core/_methods.py:55: RuntimeWarning: Mean of empty slice.\n",
" warnings.warn(\"Mean of empty slice.\", RuntimeWarning)\n"
]
},
{
"metadata": {},
"output_type": "pyout",
"prompt_number": 8,
"text": [
"<seaborn.axisgrid.FacetGrid at 0x3c948d0>"
]
},
{
"metadata": {},
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAfEAAAF3CAYAAAC123K4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XucHFWZ8PFfZyJBMECUhBWDIuIjLitXyYaoa0S8wBp0\nXUS8g76ShRfUVVnUD65xzeuqvCogF4MsiL4o4iJodlnEC7IoBoNcvCA+C+GWrBoWBhMIiSSZ94+q\ngabpnunJdM9M9fy+/6S76lSd033S89Q5deockCRJkiRJkiRJkiRJkiRJkiRJkiRJ0qCI2BQRN0bE\nTRHx84g4sMPnnx8RS4dJ89JO5zsWIuLOiHhqk+0PdjifXSPil508p1Q1U8e7ANIEtS4z9wWIiFcC\n/wzMH+MyvAxYC/x0Sw6OiBpAZg50slBtaJXfWJdD6nkGcWl42wP3w6OB8TPAqymC0uLMvDgiTgXu\ny8xPRMSrgI9QBP3zgfXA/sB2wPsz89/rT162Ws8Dng2sA46hCN4LgU0R8VbghMz8cd0xM4GvAU+n\nCPKvAPYr8/gusKzM89CIOKFJeecDH8jMBeX5zgCWZ+YFEXEn8A3gEOBh4M2ZeXuZ59nAM8tivC8z\nr42IpwFfB3Yuy1Jr9UVGxOeAVwK/B44sv9uLM3P/cv9zgYsG39cdtzvwRWBHYBNwOHUXBRGxK/AV\nYNty0/GZ+dOIeHr5WaZT/L37u7KM55XfzwBwXmae2qrM0kQ2ZbwLIE1QTy67038DfAn4RLn99cDe\nwF7AwcApEbET8GHgjRHxMuA04Ki6FvAzM/MA4K+BL0bEtIa8Pg78PDP3pgj+X8nMOymC1ucyc9/6\nAF76GPD9zPwL4F95LLAC7A6cWe47oEl5/6zJ5x3gsaA4ADyQmXsBZwCDAe404POZOYciiJ5bV5b/\nLPO7tKEs9baluFD4C+Bq4GOZeTvwx4jYu0xzNEWAbXQh8IXM3Ac4kOIioN4fgFeUwf9I4PRy+5uB\nK8pelb2Am4F9gZ0z8wXlZzy/RXmlCc8gLjX3cBk8n0/Riv1quf3FwNcycyAzV1MEozmZ+TDwbuB7\nFMHmjjL9AHAxQGbeBqwA9mjI60WD58/Mq4CnRcT0cl+rVu2LgIvKY74L9Nftuyszf1aXrrG8BzB8\n1/bXy38vogiaUFwEnBERNwLfBqZHxLbAS4D/V5bl8oay1NtM0SqmTP/i8vW5wNERMQU4gqKH4VHl\nd7FzZn67zONP5fddbyvg3Ij4BcX3/fxy+8/Kc38M2CszHwRuB3aLiNPLXpM1w3wX0oRlEJeGkZnL\ngB3L7uQBHh9YazwWEPcC7gWeMcwpNzfZ1rILegitjnlomHQDwEYe//t/8hD5DH6+GvCX5cXNvpm5\nS2Y+VLdvJOq/t29RdN2/Brg+M1tdBAzl74HflS3rFwLTADLzGoqLjFXAlyPibZn5AEXvxI8outfP\nbXpGqQIM4tIwImIPit/K/wDXUHSbTymD+kuAn0XEs4D3U3TVHhIRc8rDa8AbIqIWEc8BdgN+25DF\nNcBbyrzmA/dm5lqK++LTae4nFK3WwYF3M1qkayzvX1G0Tu8G/jwitoqIHYCDGo57Y92/15avrwTe\nU/e9DHaB/ydFtzURccgQZZkCvKF8/eaybGTmeor7+GfTpGu7/C5WRsRryzymRUTjRcd2PNbF/nag\nr0z7TIrv81yKYL1feQ+/LzO/BXyUYiyBVEkGcam5wXviN1J0Kb+j7JK+FPgFxb3VHwAnlt3U51IM\nFPs98C6Krt1pFK3NuykC5+XAwsz8E4+/B70I2D8ibgY+Cbyj3L4U+JuyHC9qKN/HgVeWj1gdThHA\n1pb7Hu0qb1XezLyHotv5VxRd3Dc0nH9GWZ4TKFq5UATwF0bEzRHxa4qBd4Nl+auI+BXwN8BdLb7T\nh4A5ZZnnA/9Ut+9rFD0UV7Y49m3Ae8oy/QTYqeGzngW8IyJuAp4HDD7O9jLgpoi4geKi51SKnpKr\nyrr9KvChFnlKkiaziDg/Il7fhfNuFRGDrc0DyyDVqXPf0ew5726KiA9GxMfHMk+pF/iImVRNzwQu\nLgeD/YliUF2njOnz3BFxKcXjdY1d+pIkSZIkSZIkSZIkSZIkSZIkSZIkSZI0qUXE5ojYbZg0X46I\nTwyVplsi4s6IePl45C1VldOuSqpXPx1s17S4WBiTvKVeYhCX1GhLVlSTNA6cdlUaJxFxEsUCI9sB\n/w0cB1wFnAT8L2AHikVL/i4z+yNiV4r1yBdSLJpSAz6bmZ8tzzcHOI1ivfKHgUuA92fmI6Mo42uA\nxcCzgFvKsvyy3Hcn8AWKVcOeBVxBsVDMhnL/PwDvo1jYZBFwDvBc4OUUq5gNRMT7gB9m5mvLLPeN\niM83O5+kJ7IlLo2DiHge8L+BF2bmdsArgTspVgo7jGLJ0KcD/cCZDYfPB3Yvjzmp7j7yRuC9wNOA\nAymC5XGjKOO+wL9QzMv+VGAJ8J2IeFKZZIBiadFXUcx9vhdwVHnsqylWP3s5ReCeP3hMZp4DXAh8\nOjOn1wXwWqvzSWrOlrg0PjYB04A9I+K+zLwbICIWAsdn5n+X7z8O3BURb6079uOZ+TDwq4g4H3gT\n8IPMrF/J7K6IOAd4KUXrfCQG70sfAyzJzOXl+69ExEeAuZRrgQOnl8uvEhFLgX3K7UcA52Xmb8p9\nH6Ncc7xOY7f9wBDnk9SEQVwaB5l5W9mVvIgikH8X+ACwK3BpRGyuS76Rx9bPBrin7vXdwAsAIiKA\nzwH7A9tQ/L6vH0UxnwW8PSJOqNv2JGDnuve/r3v9MEXvAeW/P6vbt7LNPBvPt3OrhJIM4tK4ycyv\nA1+PiOkUXdWfpgjKR2fmTxvTl/fEoViG9Ld1r1eVr88Gfg68MTMfKi8S/nYURbwb+D+Z+cktOPZ3\nwC5173dp2N/OKHRHqkvDMIhL46BsNc8GfgJsANZTdC9/EfhkRLwjM++OiJnAgZn5nbrDT46IY4Dd\nKO4Zv6Xc/hRgLbAuIvYAjgVWj7BoNR7r5v4SRa/A94HlFK37+cDVmfngEMcDXAycFxFfpbgY+GhD\nuj+U5R+uLJKG4MA2aXxMA/4ZuJei1boj8GGK+9ffAa6MiDXAT4E5DcdeDdwGfB84JTO/X27/IMV9\n5zUUI8Ev4vGt2XZbvwMAmflzikFtZwD3A/9FMRK91Xnqj70COJ1itH2WnwOKCxYoBsz9eUT0R8S3\nhjufpOaGvdKNiA8Db6V4TOSXFF19GxrSnA4cAqwDjsrMG7tQVmlSq3vEbGpmbh4m+YQSEc+n+Pux\nVdXKLk1kQ7bEyz8a7wb2y8wXAH3AkQ1pDgV2z8znUoxmPbs7RZVUJRHxNxExLSJmUNzv/44BXOqs\n4e6JrwEeAbaJiE0U98RWNaQ5DLgAIDOvi4gdImKnzPxDx0sradTdyxHxa4oBcY2OKQfbdcoxwPkU\nj9P9iFE8sy6puSGDeGbeHxGfpRiY8jDw3br7b4OeweMfeVlJMWDHIC51UGbeSdEbNtrz7Dn60rSV\nzyFjkY80mQ3Xnf4cimkTd6V4XvMpEfGWJkmbTdogSZK6aLju9BcC12bmfQDlKNJ5FFMmDlrF458B\nnc0Tu9wf55FHNg5MnTrqBoUkST2vVqu1HIQ+XBC/FfhoRDyZ4jnWg3n8LExQPA5zPHBRRMwFHhju\nfnh//7phC90LZs6czr33rh3vYqgDrMveYV32DutymO70zLwZ+ArF1I2/KDd/KSIWlnM8k5mXAysi\n4jaKWaccvCJJ0hgYlxmRVq9eMynumXuV2Dusy95hXfaOyVKXs2Zt1zJWO2ObJEkVZRCXJKmiXABF\nkjSuFi06maVLLxvxcVOm1Ni8eWR3ZxcseB2LFi0ecV4TlUFcklQ5969ZT61WY8b0aeNdlHHlwLYu\nmiyDLiYD67J3WJe94cSzrqWvr8anFh443kXpuqEGttkSlyRVzinHzfOCDAe2SZJUWQZxSZIqyiAu\nSVJFGcQlSaoog7gkSRXl6HRJUuVMpkfMhmJLXJKkijKIS5JUUQZxSZIqyiAuSVJFGcQlSaooR6dL\nkirHudMLtsQlSaoog7gkSRVlEJckqaIM4pIkVZRBXJKkinJ0uiSpcpw7vWBLXJKkijKIS5JUUQZx\nSZIqyiAuSVJFDTuwLSKeB1xUt2k34KOZeXpdmvnAt4EV5aZLMnNxB8spSZIaDBvEM/O3wL4AETEF\nWAVc2iTp1Zl5WGeLJ0nSEzl3emGk3ekHA7dn5j1N9tU6UB5JktSmkT4nfiTwtSbbB4B5EXEzRUv9\ng5l5y2gLJ0mSWmu7JR4RWwELgG822X0DsEtm7g18AbisM8WTJEmttN0FHhGvBY7NzFe3kfYOYP/M\nvL/Z/kce2TgwdWpf+6WUJGmSqtVqLWP1SLrT3wR8vdmOiNgJWJ2ZAxExB6i1CuAA/f3rRpBtdTno\nondYl73Duuwd1mWbQTwitqUY1Pbuum0LATJzCXA4cGxEbATWUdw7lySpK5w7vdBWEM/Mh4AdG7Yt\nqXt9JnBmZ4smSZKG4oxtkiRVlEFckqSKMohLklRRBnFJkipqpDO2SZI07pw7vWBLXJKkijKIS5JU\nUQZxSZIqyiAuSVJFGcQlSaooR6dLkirHudMLtsQlSaoog7gkSRVlEJckqaIM4pIkVZRBXJKkinJ0\nuiSpcpw7vWBLXJKkijKIS5JUUQZxSZIqyiAuSVJFGcQlSaooR6dLkirHudMLtsQlSaoog7gkSRVl\nEJckqaIM4pIkVZRBXJKkihp2dHpEPA+4qG7TbsBHM/P0hnSnA4cA64CjMvPGThZUkqRBzp1eGDaI\nZ+ZvgX0BImIKsAq4tD5NRBwK7J6Zz42IvwTOBuZ2vriSJGnQSLvTDwZuz8x7GrYfBlwAkJnXATtE\nxE4dKJ8kSWphpEH8SOBrTbY/A6gP7CuB2VtaKEmSNLy2Z2yLiK2ABcBJLZLUGt4PbGmhJGk4ixad\nzNKll434uClTamzePLI/TwsWvI5FixaPOC+p20Yy7eohwM8z894m+1YBu9S9n11ua2rGjG2YOrVv\nBFlX18yZ08e7COoQ63Ji2WabrZgypbHtMLT7/rgegKdtv/WI87L+J6bJXi9t/wIi4iLgPzLzgib7\nDgWOz8xDI2IucGpmthzYtnr1mknRSnfkZO+wLnuD8233jslUl7NmbdcyVrd1TzwitqUY1Patum0L\nI2IhQGZeDqyIiNuAJcBxoyqxJEkaVlvd6Zn5ELBjw7YlDe+P72C5JEnSMFyKVNKk4QQh6jVOuypJ\nUkXZEpckdczFP7yN5beu7no+/WvXQ63GiWdd2/W8DthjFkcctHvX89kStsQlSR2z/NbV9K/d0PV8\nZkzfmh1H+Kjgluhfu2FMLkq2lC1xSVJHzZg+jVOOm9f1fMZifMNYtPRHw5a4JEkVZUtc0qQxmSYI\n0eRgS1ySpIoyiEuSVFEGcUmSKsogLklSRRnEJUmqKEenS5o0nDtdvcaWuCRJFWUQlySpogzikiRV\nlEFckqSKMohLklRRjk6XNGk4d7p6jS1xSZIqyiAuSVJFGcQlSaoog7gkSRVlEJckqaIcnS5p0nDu\ndPUaW+KSJFWUQVySpIoyiEuSVFFt3ROPiB2Ac4E9gQHgnZm5rG7/fODbwIpy0yWZubizRZUkSfXa\nHdh2GnB5Zh4eEVOBbZukuTozD+tc0SRJ0lCGDeIRsT3wksx8B0BmbgT+2CRprcNlk6SOcu509Zp2\nWuLPBu6NiPOBvYGfA+/NzHV1aQaAeRFxM7AK+GBm3tLx0kqSpEe1E8SnAvsBx2fm8og4FfgQ8I91\naW4AdsnMdRFxCHAZEB0vrSRpQpuzchm7PbCCFSdd0vW87uqbwqZNm7uax5FrN7Bih92AeV3NZ0u1\nE8RXAiszc3n5/l8pgvijMnNt3ev/iIizIuKpmXl/sxPOmLENU6f2bWmZK2XmzOnjXQR1iHVZfX19\nxV0/67J7ppTPPPX1jc3DT2ORz5QpE/f/zLBBPDN/HxH3RERkZgIHA7+uTxMROwGrM3MgIuYAtVYB\nHKC/f12rXT3FmaF6h3XZGzZtGqCvr2ZddtGyneeybOe5nHJc91uuY/G7POOsawH42wn6f6bd0ekn\nABdGxFbA7cA7I2IhQGYuAQ4Hjo2IjcA64MhuFFaSJD2mrSCemTcDBzRsXlK3/0zgzA6WS5I6zrnT\n1WucsU2SpIoyiEuSVFEGcUmSKsogLklSRRnEJUmqqHYfMZOkynPudPUaW+KSJFWUQVySpIoyiEuS\nVFEGcUmSKsqBbZLG3cU/vI3lt67uej79a9dDrcaJ5aIW3XTAHrM44qDdu56PJjdb4pLG3fJbV9O/\ndkPX85kxfWt23H7rrufTv3bDmFyUSLbEJU0IM6ZP65nlK8eipS+BLXFJkirLIC5JUkUZxCVJqijv\niUuSOua+NeuBsRkX0NdXY9Omga7m0b92AzOmT+tqHqNhEJckVc7g44IzntLdADtj+jQO2GNWV/MY\nDYO4JKljzvvQQWOSj4vZFLwnLklSRRnEJUmqKIO4JEkVZRCXJKmiHNgmSaqcU46bNyZT6E50tsQl\nSaoog7gkSRVlEJckqaIM4pIkVVRbA9siYgfgXGBPYAB4Z2Yua0hzOnAIsA44KjNv7HBZJUlSnXZb\n4qcBl2fm84G9gN/U74yIQ4HdM/O5wDHA2R0tpSRJdU4861retfjK8S7GuBs2iEfE9sBLMvM8gMzc\nmJl/bEh2GHBBuf86YIeI2KnThZUkSY9ppzv92cC9EXE+sDfwc+C9mbmuLs0zgHvq3q8EZgN/6FRB\nJUnS47XTnT4V2A84KzP3Ax4CPtQkXa3hfXcXeZUkaZJrpyW+EliZmcvL9//KE4P4KmCXuvezy21N\nzZixDVOn9o2knJU1c+b08S6COsS67J6+vqINMFbfcbfzGevPMxn5HReGDeKZ+fuIuCciIjMTOBj4\ndUOy7wDHAxdFxFzggcxs2ZXe37+u1a6e4pSAvcO67K5Nm4qOu7H4jseiLsfy80xWmzYN0NdXm/Tf\ncbtzp58AXBgRWwG3A++MiIUAmbkkMy+PiEMj4jaK7vaju1NcSZKcO31QW0E8M28GDmjYvKQhzfGd\nKpQkSRqeM7ZJklRRBnFJkirKIC5JUkW1O7BNkrpmzspl7PbAClacdEnX87qrbwqbNm3uah5Hrt3A\nih12A+Z1NR/JIC5JqpwTz7qWvr4an1p44HgXZVwZxCWNu5/NnsvPZs/llOO633Idi8eSTjzrWgDe\n0NVcJO+JS5JUWQZxSZIqyiAuSVJFGcQlSaooB7ZpUlm06GSWLr1sxMdNmVJj8+aRra67YMHrWLRo\n8YjzkjQ8504v2BKXJKmibIlrUlm0aPEWtY694pc0EdkSlySpomyJS8NwZihJE5UtcUmSKsqWuCSp\ncuwhK9gSlySpogzikiRVlEFckqSK8p64NAxnhpI0UdkSlySpomyJS5Iqxx6ygi1xSZIqyiAuSVJF\n2Z0uadzdt2Y9UEzg0W19fTU2bRrZsrIj1b92AzOmT+tqHr3EJYK3nEFcGoYzQ/WO/rXroVZjxlO6\nG2BnTJ/GAXvM6moeEkBtPDJdvXpNdy+DJwgHXfQGg3jvsC57y2T5Gztr1nYtY7X3xCVJqqi2utMj\n4k5gDbAJeCQz5zTsnw98G1hRbrokM3vnpoMkSRNQu/fEB4D5mXn/EGmuzszDOlAmSZLUhpF0pw93\n/3xc7q9LkjRZtRV4I2IF8EeK7vQlmfmlhv0vBb4FrARWAR/MzFtanc+Bbaoa67J3WJe9Y7LU5VAD\n29oN4k/PzN9FxEzge8AJmXlN3f7pwKbMXBcRhwCnZWa0Ot8jj2wcmDq1r/1PIEnSJFWr1UYXxOtF\nxMeABzPzs0OkuQPYv9U9dFviqhrrsndYl71jstTlqB4xi4htypY2EbEt8Erglw1pdoqIWvl6DlAb\nZhCcJEkapXZGp+8EXBoRg+kvzMwrI2IhQGYuAQ4Hjo2IjcA64MgulVeSJJWcsa2LJktXz2RgXfYO\n67J3TJa6HKo73bnTpWE4VWfvsC7Va5x2VZKkijKIS5JUUQZxSZIqyiAuSVJFGcQlSaooHzHrosny\n+MNkYF32Duuyd0yWuhzVjG2SJGliMohLklRRBnFJkirKIC5JUkUZxCVJqijnTpeG4XzbvcO6VK+x\nJS5JUkUZxCVJqiiDuCRJFWUQlySpohzYpsq6+Ie3sfzW1V3Pp3/teqjVOPGsa7ue1wF7zOKIg3bv\nej6SeoMtcVXW8ltX0792Q9fzmTF9a3bcfuuu59O/dsOYXJRMZqccN49/OfmV410MqWNsiavSZkyf\nxinHzet6PmOx0MJYtPQl9RZb4pIkVZRBXJKkijKIS5JUUQZxSZIqyoFtkiYN505Xr7ElLklSRRnE\nJUmqKIO4JEkV1dY98Yi4E1gDbAIeycw5TdKcDhwCrAOOyswbO1hOSZLUoN2BbQPA/My8v9nOiDgU\n2D0znxsRfwmcDcztUBklSVITI+lOrw2x7zDgAoDMvA7YISJ2Gk3BJKnTnDtdvabdID4AfD8iro+I\ndzfZ/wzgnrr3K4HZoy2cJElqrd3u9Bdl5u8iYibwvYi4NTOvaUjT2FIfGH3xpNbmrFzGbg+sYMVJ\nl3Q9r7v6prBp0+au5nHk2g2s2GE3oPsLukjqDW0F8cz8XfnvvRFxKTAHqA/iq4Bd6t7PLrc1NWPG\nNkyd2jfy0lbQzJnTx7sIPWtK2Y/U1zc2D1mMRT5Tpvh/Ziz4HfeOyV6XwwbxiNgG6MvMtRGxLfBK\n4OMNyb4DHA9cFBFzgQcy8w+tztnfv24URa6OsVi+cjJbtvNclu08t2eWIj2jXIr0b/0/01X+LnuH\nddleS3wn4NKIGEx/YWZeGRELATJzSWZeHhGHRsRtwEPA0V0rsSRJAtoI4pl5B7BPk+1LGt4f38Fy\nSVLHOXe6eo0ztkmSVFEGcUmSKsqlSCVV0qJFJ7N06WUjOub+Neup1Wp875xpIzpuwYLXsWjR4hEd\nI40Fg7ikSeOp223NlCk1Nm92Ggv1BoO4pEpatGjxFrWOfSxJvcR74pIkVZRBXJKkijKIS5JUUQZx\nSZIqyoFtqqz71qwHilm4uq2vr8amTd0d0dy/dgMzpo/s0SdJk5tBXBpG/9r1UKsx4yndDbAzpk/j\ngD1mdTUPSb3FIK7KOu9DB41JPs63LWmi8p64JEkVZRCXJKmiDOKSJFWUQVySpIpyYJs0jFOOm+d8\n25ImJFvikiRVlEFckqSKMohLklRRBnFJkirKIC5JUkU5Ol0ahtOuSpqobIlLklRRBnFJkirKIC5J\nUkUZxCVJqiiDuCRJFdXW6PSI6AOuB1Zm5oKGffOBbwMryk2XZObiThZSGk/OnS5pomr3EbP3ArcA\n01vsvzozD+tMkSRJUjuG7U6PiNnAocC5QK1FslbbJUlSl7TTEv88cCKwXYv9A8C8iLgZWAV8MDNv\n6VD5JElSC0O2xCPiNcDqzLyR1q3tG4BdMnNv4AvAZZ0toiRJambIbvCI+CTwNmAjsDVFa/ySzHz7\nEMfcAeyfmfe3SvPIIxsHpk7t27ISS5I0idRqtZaxuu172RHxUoqu8sbR6TtRtNYHImIOcHFm7jrU\nuVavXjPQbr5V5ojm3uDc6b3F32XvmCx1OWvWdi1j9UgXQBkAiIiFAJm5BDgcODYiNgLrgCO3sJyS\nJGkE2g7imXk1cHX5eknd9jOBMztfNEmSNBRnbJMkqaIM4pIkVZRBXJKkihrpwDZp0nHudEkTlS1x\nSZIqyiAuSVJFGcQlSaoog7gkSRVlEJckqaIcnS4Nw7nTJU1UBnFNKosWnczSpSNbLff+Neup1Wp8\n75xpIzpuwYLXsWjR4hEdI0kjYRCXhvHU7bZmypQamzdPisX3JFVI20uRdpJLkapqrMveYV32jslS\nl0MtRerANkmSKsogLklSRRnEJUmqKIO4JEkVZRCXJKmiDOKSJFWUQVySpIoyiEuSVFEGcUmSKsog\nLklSRRnEJUmqKIO4JEkVZRCXJKmiDOKSJFWUQVySpIqa2k6iiOgDrgdWZuaCJvtPBw4B1gFHZeaN\nHS2lJEl6gnZb4u8FbgEGGndExKHA7pn5XOAY4OzOFU+SJLUybBCPiNnAocC5QK1JksOACwAy8zpg\nh4jYqZOFlCRJT9ROS/zzwInA5hb7nwHcU/d+JTB7lOWSJEnDGDKIR8RrgNXlPe5mrfBBjfue0O0u\nSZI6a7iBbfOAw8r73lsD20XEVzLz7XVpVgG71L2fXW5radas7Ya6IJAkSZ0UES+NiKVNth8aEZeX\nr+dGxLKxL50kSZPPSJ8THwCIiIURsRAgMy8HVkTEbcAS4LjOFlGSJEmSJEmSJEmSJEmSJKlCIuLB\nIfb9pIv5fqRb5+5V41VX7YiInSPim1t47I8iYv9Ol6kqul2vEfHxiHj5CI9ZEBEnDZNmi+tcUodE\nxNom29pa3KfT+Wpo41VXDfn1deGcV0XEfiNI31MrSI7jb7CnvsctMaY/HqmbImI+8AngfuB5wB4R\n8WBmPiUing58A5hO8f/+2Mz8ccPxewLnAVtRPH75+sy8PSLeCpxQbr+O4jHKTwJPjogbgV9l5tsi\n4v3A0eXpzs3M0yJiW+BiiumJ+4B/ysxvRsQ/Aq8Bngxcm5kLu/S1TEijqauI2B64OTN3Ld9vC/wG\neDawK3AGMJNiVcV3Z+ZvI+LLwHpgH+AnEfEd4NTylAPAS8pjlmbmC8pA/2ngVRRTTn8pM88oW4On\nlOVaXpbtTw2f7U3Ahylmsvz3zPxQuf1B4IvAwRT/h64d5dc44XSpXnejWLtjaWZeEhF3AhcBrwA+\nU15AfBZ4iOI7fXZmLoiIo4D9M/OEsv7/CLwQ+DPgH8pz7UrrOj8nM8+c6L/VSX8Vo56zL/CezNyj\nfD84BfCbgSsyc19gL+CmJscuBE4r0+wPrIqI5wNHAPPK7ZuBt5R/mB/OzH3LAL4/cBQwB5gLvDsi\n9gFeDazKzH0y8wXAd8u8vpCZc8ptTy6nOJ5stqiuMvOPwE1lwIDiD+wVmbkJOAc4ITNfSLHmw1l1\nh+4MHJgKE+vwAAAFqElEQVSZHwA+ABxX5vFiigBf7xjgmcDembk3cGFEbA2cDxyRmXtRBqL6gyJi\nZ+BTwMsoLhgOiIjXlru3AZaV/xd6LoDX6XS9bizPMXieAeB/MnN/4NsUF0avLut8R1pP+/1nmfmi\n8ryfarK/sc6/Vm6f0L9Vg7h6zc8y865m24GjI+JjwF6Z2ewe3k+Bj0TEPwC7ZuZ64OUUAf36stV9\nEEWLr9GLgW9l5sOZ+RDwLYrW3S+AV0TEpyLixZm5pkx/UEQsi4hflOfcc8s/cmWNpq6+AbyxfH0k\n8I2IeArFVNHfLOvqixStLij+sH8zMwf/wP8E+HxEnADMKC8A6r0cWJKZmwEys5+iZXlHZt5WprkA\n+Ku6Y2rAAcCPMvO+8pwX1qXZBFwyxPfRKzpary3yGNy+B7CiLr+v03ydjwHgMoDM/A3QbKXNZnUO\nE/y3ane6es1DzTZm5jUR8RKKq/AvR8TngLXAx8ok78rMr5fTBr8GuHxwVkLggswcbhDbAI//41ED\nBjLzvyJiX+CvgcUR8QPgM8CZFF19q8o/aluP/KNW3hbXFbAU+GREzAD2A35I0U3bX7b0mllXl8en\nI+LfKOrlJxHxKmBDQ/rhFnZqFSwa0wxuW193EdHLOl2vbefB0At11d/2aJXucdvL3pcJ/Vu1Ja5J\nISKeCdybmedS3F/bNzMvK7vD983MGyLi2Zl5R2Z+gaKb7gXAD4DDI2JmeZ6nlucCeKRu8M41wOsi\n4snlvbzXAdeU9wHXZ+aFwP+l6Goc/CNwX9l6fAOu/PeoduqqbMUtB06nuKc5UPZy3BERh5fnqUXE\nXi3yeE5m/jozP1Oe53kNSb4HLBwcBFcGlQR2jYjnlGneBvyo7pgBitbmSyPiaeWxRwJXj/Ir6Qlb\nWq/DnPa3wG4R8azy/RvZ8t9Sszqf8L9Vg7h6wUCL1/XvX0Zxv+0GinvcpzU5zxER8auyK3ZP4Ctl\n19vJwJURcTNwJY910Z4D/CIivlou1/tlij/iyygGQt1McSFwXXnOfwQWl/f+vgT8CriCYrDcZNGp\nuoKiS/XNPL7L9S3AuyLiJorv97AW+b03In5Z1umfgP9oSHMucDdF/d4EvKm8vXI0RXf9L4CNFF32\nj8rM3wMfAq6iuOd7fWYubTh3L+p2vTaVmQ9TDBK8IiKuB9ZQDGAbzLdVuZq9blbnDzB5f6uSJHVX\n2fM1+PrMiHjveJZnrHlPXJJUZe+OiHdQPAJ6A8VqmpIkSZIkSZIkSZIkSZIkSZIkqW1DTVEnqSIi\nYjPFPO0fyMwfDJFuEbBtZp7YwbyfRDHL1nOAIzPz3zt1bklD8zlxqXfMy8x1w6Tp+KxhmfkIsE9E\nXNWN80tqzSAu9aBybebPU6yfvBn4z8x8D3W9bxHxAorFHbalmCP6nMw8rdx3DPA+ikVBplDMGf1f\nZfqXldsfzMwXj9VnkvREBnGpN50KrCnXvSYinlpur28p3wEcnJl/Khd3uC4irsjM31KstPa8zPxD\n2V0+lWJ97PmZ+fzynNuP1YeR1JwLoEi96a+BUwbfZOb9TdJsC5xXLubxY2BnYO9y3w+Br0TE8cDs\ncqGJ24EnRcR5EfFWHFMjjTuDuNS7WgXZwdb4J4H/BvbJzH0oVmDbGiAzX0+xetu2wFUR8epyqc89\ngYuAvYBfR8ROXSy/pGEYxKXe9G/AoyPQI+Jp5csajwX37YGVmbk5Iv4CeEmZtq9cb3t5Zn6aYvnV\nfSJiR4qR7VcCH6ZY8vHZY/NxJDXjPXGpN/09cGpE/Ipi3esfUQxUq19jeTHw1Yh4F5DA1eX2PuD8\niNiBYlDc3cBJwK7AlyJiKsXfjstxfWVJkkYnIjbXr6s8TmW4KiIOHc8ySJON3elSb/gD8OOIOGis\nM46IJ0XETRRd6+vHOn9JkiRJkiRJkiRJkiRJkiRJkiSNxv8H7YVid2XtR50AAAAASUVORK5CYII=\n",
"text": [
"<matplotlib.figure.Figure at 0x3c9ea50>"
]
},
{
"metadata": {},
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAb0AAAFhCAYAAADk0nQQAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmYHFW9//H3ZCaRBBII14DKIqD5BsSwEwO5IvDDJQio\nCAJiNKAxF4SLV1DQK3q9cMGguKDsyKYILuyKoriBQZBNXMB8ZFFJFAg7EpZkMr8/zmlSqXRPJmG6\npzv1eT1PnkzXqa46XV1d3zqnzgJmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmaDrquZG4+ITwLvAxYD\nfwAOkvR8aZ1TgKnAAmC6pDuamSczM6uuYc3acERsBMwAtpE0EegG9i+tszvwWknjgQ8DpzcrP2Zm\nZk0LesBTwEJgVET0AKOAeaV19gIuAJB0M7BWRKzbxDyZmVmFNS3oSXoMOBn4O/AP4AlJ15VWWw94\noPB6LrB+s/JkZmbV1szqzdcAHwU2Al4FrBERB9ZZtfxcsa9ZeTIzs2rraeK2twNulPQoQERcBuwI\nXFRYZx6wQeH1+ixbBbqUhQsX9fX0dA9yVs3MVlxXV1dTGwPa4Gtm0PszcGxEjASeA3YDflta5yrg\nMOCSiJhMqgJ9qL+NPv74gmbk1czMKqCZz/TuBC4EbgV+nxefHREzI2JmXuca4L6IuAc4Ezi0Wfkx\nMzPruKL5ww8/5Wd+ZtYW1llnTMddQ6uumV0WzMzM2oqDnpmZVUYzG7KYma1SbrppNt/85rn09vYy\nfvyEoc6OrQSX9MzMrDI67iGsG7KYWbtwQ5bO45KemZlVhoOemZlVhoOemZlVhoOemZlVhoOemZlV\nhoOemZlVhoOemZlVhoOemZlVhoOemZlVhoOemZlVhoOemZlVhoOemZlVhqcWMjPLTj75RP7ylzl0\nd3czbdrBTJ48ZaizZIPMJT0zM6uMjpsWw1MLmVm78NRCncclPTMzqwwHPTMzqwwHPTMzqwwHPTMz\nqwwHPTMzqwz30zOzSrjpptl885vn0tvb6354FeaSnpmZVUbH9TFxPz0zaxfup9d5XNIzM7PKaOoz\nvYiYAFxSWLQJcKykUwrr7AxcCdyXF10q6fhm5svMzKqpqUFP0hxga4CIGAbMAy6vs+qvJO3VzLyY\nmZm1snpzN+BeSQ/USXO9uJmZNV0ruyzsD3y7zvI+YMeIuJNUEjxK0l0tzJeZmVVES4JeRIwA9gSO\nrpN8O7CBpAURMRW4AohG2xo7dhQ9Pd3NyaiZma3SWlKtGBHvAA6R9LYBrHs/sK2kx+qlu8uCmbUL\nd1noPK16pncAcHG9hIhYNyK68t+TgK5GAc/MzOylaHr1ZkSsTmrEMqOwbCaApDOBfYBDImIRsID0\n7M/MzGzQdVzR3NWbZtYuXL3ZeTwii5mZVYaDnpmZVYanFjKzVUJx6qDx4ydw5JGfHOosWRtySc/M\nzCqj4x7CuiGLmbULN2TpPC7pmZlZZTjomZlZZTjomZlZZTjomZlZZbjLgpl1hJNPPpG//GUO3d3d\nTJt2MJMnTxnqLFkHcknPzMwqo+Oa27rLgpm1C3dZ6Dwu6ZmZWWU46JmZWWU46JmZWWU46JmZWWU4\n6JmZWWW4n56ZDTlPC2St4pKemZlVRsf1MXE/PTNrF+6n13lc0jMzs8pw0DMzs8pw0DMzs8pw0DMz\ns8pwlwUzazp3SbB24ZKemZlVRsc1t3WXBTNrF+6y0Hlc0jMzs8po6jO9iJgAXFJYtAlwrKRTSuud\nAkwFFgDTJd3RzHyZmVk1NTXoSZoDbA0QEcOAecDlxXUiYnfgtZLGR8QbgNOByc3Ml5mZVVMrqzd3\nA+6V9EBp+V7ABQCSbgbWioh1W5gvMzOriFYGvf2Bb9dZvh5QDIRzgfVbkiMzM6uUlvTTi4gRwJ7A\n0Q1WKbeAcgtNszY3e/b1nH/+2fT29tLd3c306TOYMmWnoc6WWb9a1Tl9KnCbpPl10uYBGxRer5+X\n1TV27Ch6eroHOXtmtqLGjBlJV1e6X+3q6mLMmJGMGzd6iHNl1r9WBb0DgIsbpF0FHAZcEhGTgSck\nPdRoQ48/vqAJ2TOzFTVx4vacddaFSy2bP//pIcqN2cA0/ZleRKxOasRyWWHZzIiYCSDpGuC+iLgH\nOBM4tNl5MjOzauq40QQ8IouZtQuPyNJ5PCKLmZlVhoOemZlVhoOemZlVhufTM7O6av3w+vr66OlJ\nlwrPhWedziU9MzOrjI5reeTWm2bWLtx6s/O4pGdmZpXhoGdmZpXhoGdmZpXhoGdmZpXhLgtmFTVr\n1nHMmXM3PT09dHd309fX5y4JtspzSc/MzCqj45rbusuCmbULd1noPC7pmZlZZTjomZlZZTjomZlZ\nZTjomZlZZTjomZlZZbifntkqqDYtUG9vLz09PQwbNozu7m6mTTuYyZOnDHX2zIaMS3pmZlYZHdfH\nxP30zKxduJ9e53FJz8zMKsNBz8zMKsNBz8zMKsNBz8zMKsNdFsw6ULFLwoQJm3H00ccOdZbMOoJL\nemZmVhkd19zWXRbMrF24y0LncUnPzMwqo+nP9CJiLeAcYHOgDzhY0k2F9J2BK4H78qJLJR3f7HyZ\nmVn1tKIhy1eBayTtExE9wOp11vmVpL1akBczM6uwpga9iFgTeKOkDwBIWgQ8WWdV14ubmVnTNbuk\ntzEwPyLOA7YEbgOOkLSgsE4fsGNE3AnMA46SdFeT82VmZhXU7KDXA2wDHCbploj4CnAM8JnCOrcD\nG0haEBFTgSuAaHK+zNrarFnHMWfO3S9OCwQwfvwEjjzyk0OcM7PO1uygNxeYK+mW/Pr7pKD3IklP\nF/7+UUScFhFrS3qs3gbHjh1FT0930zJs1g6GD1/2HB8+vJtx40YPQW7MVh1Nf5YWEdcDH5KkiPgf\nYKSkowvp6wIPS+qLiEnAdyVt1Gh77qdnZu3C/fQ6Tytabx4OXBQRI4B7gYMjYiaApDOBfYBDImIR\nsADYvwV5MjOzCuq4uxSX9MysXbik13k8IouZmVWGg56ZmVWGpxYya7HitECjR4/h+eefo7u7m2nT\nDmby5ClDnT2zVZpLemZmVhkd9xDWDVnMrF24IUvncUnPzMwqw0HPzMwqw0HPzMwqw0HPzMwqw0HP\nzMwqw/30zAZZrR9eX18fPT3pJ+Zpgczag0t6ZmZWGR3Xx8T99MysXbifXudxSc/MzCrDQc/MzCrD\nQc/MzCrDQc/MzCrDXRbMVtCsWccxZ87d9PT0MGzYME8LZNZBXNIzM7PK6Ljmtu6yYGbtwl0WOs9y\nS3oR8d2BLDMzM2t3A6neHF9n2WaDnREzM2udiJg71HkYCg0bskTEDODD6c+4pZC0JjCn2RkzM7Om\nquSjov5ab/4E+AtwKnAUS57/PQXc2eR8mZnZIIqIzwFvAZ4Fvl1YvhPwP6Sav17gAEkPR8SJwM7A\nAuAaSSdHxAXAJsBC4FxJ32rphxgEDYOepL8BfwM2b112zMxssEXE24AtJe2QXw8DPpuTb5W0a15+\nKHAoKQi+B9hU0sKI6IqItYEtJG2d1+3IRjzL7acXEZsCnwZeU1i/T9KkZmbMbCjUpgXq7e1l9Ogx\nPP/8c+6HZ6uC1wPX1V5IWhwRtZebR8T/AiOBtYDb8vJDgbNygDxH0g0R8YVc2usFvgT8sVUfYLAM\npCHLJcBdpMD38cI/MzPrDH8Edq2VziKiu5D238CJknYGzmNJXLhe0kGka//pEdEDfE/SB/J6n29V\n5gfTcounEXGnpC1bkZmBcD89M2sXndRPLyKOB94M/Au4GPiMpA0j4j2k6sw5wD+B1UiNGH9KihGr\nAWcBP87vW0wqFR4n6Yct/hgv2UCC3hnA6ZLaovGKg56ZtYtOCnqWDGTszcnAwRExB3guLxvwM72I\nWAs4h9Qgpg84WNJNpXVOAaaSWglNl3THAPNvZmY2YAMJeh99ifv4Kqm56z65Tnj1YmJE7A68VtL4\niHgDcDop0JqZmQ2qphbNI2JN4A5Jm/SzzhnALyR9J7/+M/AmSQ/VW9/Vm2bWLly92XkG0mXhljqL\nB1q9uTEwPyLOA7YkNYU9QtKCwjrrAQ8UXs8F1gfqBj2zl6LWJaGvr4+ennT6jx8/gSOP/OQQ58zM\nWmEg1ZvF7gmrAQcA/1iB7W8DHCbploj4CnAM8JnSeuW7pYalubFjR9HT090o2axfY8aMpKuri76+\nJafY8OHdjBs3eghzZWatstygJ+mXxdcRcS0we4DbnwvMlVQrLX6fFPSK5gEbFF6vn5fV9fjjCxol\nmS3XxInbc9ZZFy6zfP78p4cgN7YqOvATF3STBvMYTPdedNIHegd5m5W0MpPIrgmsO5AVJT0IPBBL\nuv7vBvyptNpVwPsBImIy8ESj53lmZh3gNaQ+b4P5r98gGhH/6idtoIWUFRYRn2rWtptlRZ/pDSMN\nNnryCuzjcOCiiBgB3Evq/jATQNKZkq6JiN0j4h7gGeCgFdi2mZnVeSQUET2SFklq5vh5nwROaOL2\nB92KPtNbBNwnaaDP9Mid2rcvLT6ztM5hA92emZnVFxE7A8cBjwETgE0j4l+S1oiIVwLfAUaTrv2H\nSPp16f2bA+cCI0iFnL0l3RsR7yMVYEYAN5PG5TwBGBkRdwB/lDQtIj7GkoLLOZK+GhGrA98lNVrs\nBv5X0vci4jPAHqTRXW6UNLNJh2Upy63ezM/0ZgOPAI8DDzc5T2ZmtvK2Bv5T0qb5da0U+F7gx3mW\nhC2A39V570zgq3mdbYF5EbEZacaFHfPyxcCBko4BnpW0dQ542wLTgUmkvtYzImIr4G3APElbSZoI\nXJv39TVJk/KykRGxx6AehQYGUr25HXAp8ELtPRGxj6Tb+nmbmZkNjd/mqeGWWQ6cGxHDgSsaDC35\nG+C/I2J94DJJ90TE/yMFwFtz84yRwIN13vvv+T3PAkTEZcAbSWN2fjEiPg/8oFC63DUiPg6MAtYm\ntff4wcp95IEbSPXmKaShw34GEBG75mWeZ8XazqxZxzFnzt309PQwbNgwTwtkVfRMvYV5aqA3kqoU\nz4+ILwFPs2RevQ9KujgibsrrXFNrfwFcIGl5jVb6WLr7WRepT/dfImJr4O3A8RHxM+Ak0gTl20qa\nFxGfJXWJa7qBtN5cvRbwACT9HFijeVkyM7PBFhEbAvMlnUMaD3lrSVfk6smtJd0eERtLul/S14Ar\ngYnAz4B9ImJc3s7aeVsAC/PwkgA3AO+MiJH5Od47gRvys8TnJF0EfJFU/VoLcI9GxBrAvvTTP3sw\nDaSktyAidpH0C3jxQWndOwmzoXb00ccOdRbM7iU1Ihnsbfanr8Hfxde7AEdFxEJSCe/9dbbznoiY\nBiwkTTP0f5KeiIhPAz/JE8ouJDVk+TtpyqHfR8Rt+bne+aRqVICzJd0ZEW8BvhARi/N7/0PSkxFx\nNmmevwdJjWNaYiBTC21Peqb3fF40Ani3pFubmbFGPPammbULj73ZeQZS0luL1OVgnfz6YdI0QWZm\nZh1lIEHvC6S634fgxWnmTybVy5qZmXWMAQ1DJqmv8HfvQN9nZmbWTgZS0ns6IibXZjvP42O6IYu1\nTG06oN7eJePtjh49hueff85dEsxshQwk6H0CuDwi7sqvXwfs3bwsmZmZNceAWh5FxNrADqSmrzdJ\neqypueqHW2+aWbuo13rzoHOOaMrUQud96KueWmgQDKSkRw5yP2xyXszMVgW1qYUG0wRAjRJrg0o3\nSJvd5JkW+hURryKN57nvSrz3l8CRgznspRukmJl1vrpTCwG0KuDllv3LkPSPlQl4WR8rMFJL7jzf\nrwGV9MzMrP29lKmFImJN4E5JG+XXqwN3AxsDGwFfB8YBC4AZkubkEVieA7YCZkfEVcBX8ib7SANO\njwOuljQxB8ZZwFtJszWcLenreVDrL+R83ZLzVpvkoJa/A0jz93UBP8yzPNQm0D2DNEn5ocCN/R0j\nl/TMzFYtKzW1kKQngd/lwAlp0Okf525qZwGHS9qONMfqaYW3vgrYQdKRwJHAoXkf/04KiEUfBjYE\ntpS0JWmC8dWA84D3SNqCHJCLb8pVpJ8nDaW2FbB9RLwjJ48itTXZSlK/AQ8c9MzMVjX9TS10UJ7R\nYAtJ/6qzzneA/fLf+wPfyQNC7wh8L08YewbwirxOH/C9Ql/u2cCXI+JwYGwOmEX/DzhT0mIASY+T\nSqT3S7onr3MBsFPhPV2kUcF+KenRvM2LCuv0kobKHBBXb9qQq00HVDNs2DB6etKpOX78BI488pND\nlTWzTrTSUwsBVwMnRMRYYBvg56Tq0Mdz6a2eBYV9zIqIH5CmEZodEW9lybjNNeUWr+VndvV6FdRb\np7bsueIAKsvjkp6ZWQUMZGqhXPq7hTRn6tWS+iQ9BdwfEfvk7XRFxBYN9vEaSX+SdFLeTnm2iZ8C\nM2uNXnJwFbBRRNS6eUwDfll4Tx+plPqmiPi3/N79gV+tzHFwSc+GnKcDslVMJ08tBKmK87vAzoVl\nBwKn5ymGhgMXA7+vs78jImIXUiOVPwI/AtYrrHMOEKTpiBYCZ0k6LSIOIlWf9pAC3BnFDEl6MCKO\nAX5BKuX9QNLVDT5vvzpuWgx3TjezduGphTqPqzfNzKwyHPTMzKwyHPTMzKwy3JDFWqbWNaGnp4dh\nw4Z5WiAzazmX9MzMrDI6ruWRW2+aWbuo13rzqukfbMrUQnud/w1PLTQIXL1pZja4VrmphSLic8D1\nkn62Au/ZE3idpFn9rLPS0w6trKYHvYj4K/AUaXy0hZImldJ3Bq4E7suLLpV0fLPzZWa2Cqk7tZCk\nRYMxtZCkz9ZbHhHDauNo1nnP1aRhzfrb7j+AlgU8aE1Jrw/YeTmzrf9K0l4tyIuZ2SqrSVMLbUIa\nSeVqSZfmgswlwJuBkyLiaeBk0pifNwIbS9ozIqYD20o6PE9B9CSwHWmw6k/kbW1E42mHzpJ0akR8\nhjRe6EjgRkkzX8oxalVDluU9O+y4Z4tmZm1qsKcWWsTSk7n2AY9I2pZUS3cG8LY87dDLaTws2Cty\nqXMP0jRBZeVph76dl39N0iRJE4GREbHHQA5CI60Ien3AdRFxa0TMaJC+Y0TcGRHXRMTrWpAnM7NV\n1aBOLdRgH7XlmwL3FfZ3MY1nSbgCQNLdwLp11qk37RDArhFxU0T8HtgV2LxBngakFdWbUyT9MyLG\nAT+NiD9LuqGQfjuwgaQFETGVdGCiBfmyQTB79vWcf/7Z9PYuaVg2YcJmHkTabOgM9tRCA94H/dfa\nFWdCb7TeUsvzBLOnkqpJ5+WAvVo/+1iupgc9Sf/M/8+PiMuBScANhfSnC3//KCJOi4i1Gz0DHDt2\nFD093c3Otg3QmDEj6epa+vwdPrybceNGD1GOzKyePLXQPEnnRMTLSFMLfYxcAiust9TUQsvZ7Bxg\nk4h4dS7t7ccKznpQUJt26BeSenPgrW3r0TyZ7b6kGSBWWlODXkSMArolPZ0fir4F+FxpnXWBhyX1\nRcQkoKu/Ri+PP76gUZINgYkTt+essy5cZvn8+U/XWdusElbFqYXqkvRsRBwK/DginiHNoVdrzVl8\nDthfHpc37dDZpGmKHgRuXl6elqepDUgiYmPg8vyyB7hI0okRMRNA0pkR8RHgEGARaQbej0m6qdE2\n3TndzNqFpxZKrTwlPZP/PhWQpK8OcbYa6rgvzEHPzNqFgx5ExEeBDwAjSG00Zkh6bmhz1VjHfWEO\nembWLhz0Oo8HnDYzs8rw2JvWr9p0QEXukmBmncolPTMzq4yOq4/2Mz0zaxd+ptd5XNIzM7PKcNAz\nM7PKcNAzM7PKcNAzM7PKcNAzM7PKcD+9CitOC+S+d2ZWBS7pmZlZZXRcHxP30zOzduF+ep3HJT0z\nM6sMBz0zM6sMBz0zM6sMBz0zM6sMBz0zM6sM99NbhRX74dW4P56ZVZlLemZmVhkd18fE/fTMrF24\nn17ncUnPzMwqw0HPzMwqw0HPzMwqw0HPzMwqw10WOtisWccxZ87dL77u7u5m+vQZTJmy0xDmysys\nfbmkZ2ZmldFxzW3dZcHM2oW7LHQel/TMzKwymv5MLyL+CjwF9AILJU2qs84pwFRgATBd0h3NzpeZ\nmVVPKxqy9AE7S3qsXmJE7A68VtL4iHgDcDowuQX5MjOzimlV9WZ/9d57ARcASLoZWCsi1m1JrszM\nrFJaEfT6gOsi4taImFEnfT3ggcLrucD6LciXmZlVTCuqN6dI+mdEjAN+GhF/lnRDaZ1ySbDyLTSL\n0wKNHDmSZ5991v3wzMxeoqYHPUn/zP/Pj4jLgUlAMejNAzYovF4/L6tr7NhR9PR0NyOrbWXMmJF0\ndaV7geL/Y8aMZNy40UOZNTOzjtXUoBcRo4BuSU9HxOrAW4DPlVa7CjgMuCQiJgNPSHqo0TYff3xB\n0/LbTiZO3J6zzrqwbtr8+U+3ODdmZquGZpf01gUuj4javi6S9JOImAkg6UxJ10TE7hFxD/AMcFCT\n82RmZhXVcaMJeEQWM2sXHpGl83hEFjMzqwwHPTMzqwxPLTREil0SAIYNG0ZPT/o6uru7mTbtYCZP\nnjKUWTQzW+W4pGdmZpXRcQ9h3ZDFzNqFG7J0Hpf0zMysMhz0zMysMhz0zMysMhz0zMysMhz0zMys\nMtxPr0lmzTqOOXPu9nRAZmZtxCU9MzOrjI7rY+J+embWLtxPr/O4pGdmZpXhoGdmZpXhoGdmZpXh\noGdmZpXhLgsroTgt0IQJm3H00ccOdZbMzGwAXNIzM7PK6Ljmtu6yYGbtwl0WOo9LemZmVhkOemZm\nVhkOemZmVhkOemZmVhkOemZmVhnup1dHbVogwP3wzMxWIS7pmZlZZXRcHxP30zOzduF+ep3HJT0z\nM6uMpj/Ti4hu4FZgrqQ9S2k7A1cC9+VFl0o6vtl5MjOzampFQ5YjgLuA0Q3SfyVprxbkw8zMKq6p\n1ZsRsT6wO3AOjZ8fuk7czMxaotklvS8DHwfGNEjvA3aMiDuBecBRku5qcp5e7JLQ3d3N9OkzmDJl\np2bv0szM2kDTgl5E7AE8LOmO/OyuntuBDSQtiIipwBVA9LfdsWNH0dPT/ZLyNnx4en9XVxdjxoxk\n3LhGNa9mZrYqaVrVYkScAEwDFgGrkUp7l0p6fz/vuR/YVtJjjdZxlwUzaxfustB5WvKFRcSbSFWX\n5dab65JKg30RMQn4rqSN+tuWg56ZtQsHvc7TymHI+gAiYiaApDOBfYBDImIRsADYv4X5MTOzium4\nuxSX9MysXbik13k8IouZmVWGg56ZmVXGKje10OzZ13P++WfT29vraYHMzGwpLumZmVlldNxDWDdk\nMbN24YYsncclPTMzqwwHPTMzqwwHPTMzqwwHPTMzq4yO67LgaYHMzGxluaRnZmaV0XHNbd1lwcza\nhbssdB6X9MzMrDIc9MzMrDIc9MzMrDIc9MzMrDIc9MzMrDIc9MzMrDIc9MzMrDIc9MzMrDIc9MzM\nrDIc9MzMrDIc9MzMrDIc9MzMrDIc9MzMrDIc9MzMrDIc9MzMrDIc9MzMrDJ6mr2DiOgGbgXmStqz\nTvopwFRgATBd0h3NzpOZmVVTK0p6RwB3AcvMeB4RuwOvlTQe+DBwegvyY2ZmFdXUoBcR6wO7A+cA\nXXVW2Qu4AEDSzcBaEbFuM/NkZmbV1eyS3peBjwOLG6SvBzxQeD0XWL/JeTIzs4pqWtCLiD2Ah/Mz\nunqlvJpy2jLVoGZmZoOhmQ1ZdgT2ys/tVgPGRMSFkt5fWGcesEHh9fp5WUPrrDOmvwBqZmY2tCLi\nTRFxdZ3lu0fENfnvyRFxU+tzZ2ZmVdHKfnp9ABExMyJmAki6BrgvIu4BzgQObWF+zMzMzMzMzMzM\nzMzMzMzMzKyNdFTz//7G8YyIdwD/C4wHXgD2lvTzOtt4A3ATcKuk7UtpOwNXAsOBhcAXJB1fWmdX\n4AfAIuB2STsX0o4CDswvNwVeBqwt6YnCOi8HvgXslLfxn5LOL6T/HVgTGAH0Am+Q9KdSHp7K214M\n3Cvp9aX0ecBawMh8rDYspc8H1sgvFwFTJP2+kP4O4Ht5/33A3yRtVtrGX4FaPgJ4t6TLCukPAuOA\n5/M2TqxzLB/MnxVgoaQxpfTH8meo9d0cAby8djzzsRoLdOf0Q0vHcizwTeDfcz7/ARwo6abCOmsB\ntwCvJh3PD0u6sJC+KXAhsC3wCPAocHBpGzOAL5C65iwGZki6qJD+XuC0nN4HHCXp1NJnXQu4FNiV\nNEjDvqV97AFczpLv5AJJ/1F6/5XAG/KiuyRtU0g/Cng/qYvQyHw83izpusI6mwA3ks4dSOf/sTlt\nAumc2DC/dzhwkqRPFd4/AbgBGJPzuAj4b0mnFNIvz8d6JOncOLqUfi1QG5VpOPBFSccU9nEI8CWW\nnBOLgU+VtnFJThtFOje/IelDpfQ1SINjvAy4Lw+FWNvHLODw/LKL9L0dI2lWYZ2xwLnAJsBzpHNi\nqd+ptadOm2Wh4TiewHWkIc0uB+4AziqvkIPmt+i/L+ADeRu/qnORXgv4NvBj4JfAPsV0SV+UtDXp\nQnsz8Ggx4GWHkfpHXk66wJwcEcX+kmOAUyWNJF1ov1rKw+75/a8Edgb+VeczLAL2BE4ovz9bCGya\n97Evyx6r60jHaD3SRXR4nW30kS7Q84AfUn+QgZ9IGiVp9QbHcm1g+5yPTers40lgPUmjgPcAvywd\nz9HAOTl9Q5Y9lp/Kn+FjwFbAX4G7S/v4PvCspBH58xxeSn8UeBi4BjgJ2KLONt5FurivRjonPlpK\nfzvwsZy+A3Bknc96CvAq0rH8WJ19HAb8MW9jNHB0Kf004LX53xrAu4uJkr5I+l0cmfP4c1KwL7oM\nuC3v49XAR2rHU9IcUkA6GVgdeAx4Y+n9ryHdTK4G7EIKKJcX8jAHeFP+dwLpPCynHwC8Iu/jKeAt\npX1cKGlk/s4nkwLSUtvIv8HtSOfm88BvS/vYhXRjPIH03ZaP1dH5vK2ddy+QfvdFnyLd9G5Jupmo\n9zuzNtQxQW8A43iOLaQPJ92Vl32adKf8hwa7GUe6y2y0j0NJs0F8DeiStMw+CvlcRP3g+izpx1bL\n56OSFhWOhFl7AAAMf0lEQVTSRwC/hhd/oBtFxLhC+l6kQNfVz3ili4E7SReVep5nSbC8mdLQb5Ke\nyX92kS6g9Y4lpEHCvw/Mb5DeX03Ce4FngH/mfTbaR1dh/YtLab2kAADpZqF8LCcC60g6Nx/LV5OO\nLwARsSYwCfi/nIcbgdGl4/kC8DpSDQOSFkl6srSNTQslt9+QbkiK6TtIOjcvGkm60FJaZ3fSeTUf\nWFxnH1uQSoCN8vAWUolmbk6/v84+3pjz8V7g23W2sR7pxgBS0HmkdDw3A34B7AYIeGWdc/OC/PcY\n0m/ghWI+JM2XdCvpJuURSQ+U0n+T87UbMAdYp5T+TOHlLsCC8jayw4E/kW6cHi2lvZdUqt6MVFPy\nexr7L+DvdfZROxaNfqfWppo+tdAgqo3jOaaf9B8C55PumKcUEyNiPeAjwFvJF7k6DiUForNJF7/X\nSbqrkD6ddNd4MrBJREyT9M06+TiWVBq8sc4+tgMeIlUVrUUqkRU9D5yfq+6uJV2o12dJYFmPFMyu\ni4heUoBbP2+zpo9UWlsHmF0nD32F999PKsWUjSQF7R5gVp30YcAnSRemWhVmeR+7RcQC4F5gv9Kx\nHJ+38deIGAZcIumDDfLZR6qmKvfjfArYLyLeTzoO7yqlzwW2jIjzSCWsTUglodqx3JgUOKdFxNHA\nbaQq0OLx3Div/05gXK7uPELSgmJ63seWpIv8tYU81NJ/RhqlaBjpgl40iRSMtycFjvUj4kelfTwB\nvDkfz0eAd0q6vZC+ENg3Iv6LVN12jKRv1MnHhaTSy8KIuLi0j/uAvXN1LXm9ojuBvUnn7WxSibR8\nbtaCw/7A31n23Kx5Pank2cj+pO9imRvUiHgncCLp+/xKnfT1gHeQzu37WPbcHE/6nV8AvNDgd0xE\njCJ9Z/9dJ3+1Y/HriJjEsr9Ta1MdUdJb3jiehfQvAx8gBabySfwdUpXlHdT53HkbfyEFzA+RfjBX\nlNKfI92hHkN6LnhsRIwvrfNwXucPpDvd8j42IJXk9gF+BZwaEaMLq21Pemb4MuCQnKfeUnYPyVU4\nU/P2tiqlT8np3wKmRES5GqqWfjwp6F7OsrbO1VTvBI6ss43fky7eU0l3va8rpe9EukF5NenZyrWl\n9OGk0sI6wNbAgRFxQIN8nkY6BhNL6d8FvkG62N4HfKN0LC8kldx3JJ0TD5POj5oe0jPFy/Pzr2eA\njVj6ItkDbJPf/+W8zjF10k8jVR2OZ+mSRS39mFyNeyXLHu+jScfoNOBq0k1EeR/jgd1yldttwE9L\n6euQAt86pFLMScVzs5CPu0k3h4/X2cd2pCrkEcBFwHml4/l5UpX0tHyc7mDZc7MrIkaQzquHqD+l\n2AhSbced5bRC+t6kwFiuxkXSFaQbjGcpVU1mXyHV6uxJKrmWrxnDSY8OeoA3U/odF7wzv/fCOmmf\nJ9Wy3EGqeq53LKwNdUTQY8k4nveTqrh2zXesjdK3Al4VEf9WWGdz4F0RsZBUFbRdRPy8tI2ppCqR\ni0kX2FdGxNqF9A1JF/gLSM8zukg/vqXyQXrAvXmDfG5JuoO+mPRMYiTpAgCApHskHSxpIuk5wbqk\nC3rNPNIFEknzSYG4XD35z/znAlLwnVROj4gtgC+SRsIpB6wXtyHpB3k7O5dW2ZzUIOC3pKqwoyNi\nr9LnWJDzeCEwqnAsIZUIfijpWUkiHfe3Nfgcbwd+Uv4cpCq/7+V9fIcUkCYU0kVqhDNBaczXxaQg\nXDOXVM1bqzL7PilozCutM5dU6qits02d9OdJNQSHsvTxnEtqTFR7fnYKMLJ0bo4nBYfvki7itXOx\nvI1f59cn522sXUh/ErhM0rOkm51nWPrcrOVzEuncq/c5nge+nl9/g3QRL56bT5MC9s8k7Ud6HFA+\nNzfIeb+NdO7Wq+KfSjqez9RJA/gPUmB6u6THG6wzlXTj2VU6lpAC2mWk83IP4LTiuUk69/5Ken4p\n4HqWPlY1hwN35/NrKZKezr/TrfO5VT4W1qY6IuhJ+pSkDSRtTKr2+LkKA1crtSDbmVTdsT/pB/ew\npEcL64yV1CNpOKnq8VZJu5a2sV1hG7eTnhE9VkifnLf9XlIp7TlSw5riNl6fl7+nQT5PJwWa/Ukl\nvl7yjyUiRkXEehExIiJWJ91R3yap2FjlWuCgvP7OpAf5v6kl5m3U7s5rd9R/KKVvRroofCh/5qWq\nkCJi89o2ImJHUmC+ubgNYMv8fbyeVPX2JUlXFfaxSUR05c+xN6l15mOlz/GmiOiO1KJ1U1LLv6U+\nR37WtBMpsC/1OUjVprvlfbydVO1WvPA8C8yNZAappPfi8xtJDwJ/I11kIVVfPynpodI6DwAvz4t2\nIwXoYvrDpBLa+0g3ReX0+RERedE04IXSuflq0nf4VlIw+impoUlxGw8WtvGB4vHM6fcCb8mNtaaS\nvrO7Stv4B+l3cmWDz/EYsF9e9A7S+fPi8czfxYHAxfl4/qp0bl5FatRxAOlm6InisSw4APhjneVE\nxIakxw8nS7qnTvprIqIrb+PGnPelntlJ2oT0vO0Q0vE8pHZuZleSngdeks+jN1A4VoXPug1LbgLK\n+Vgzl0hpcCysTXVUlwVIg1cDR0raK5aM4XlmRHyC9IN7GakK5m3kO1lJZ5a2cQ2p6fuk0jY+Qvqh\nvAz4N1Ljgi2L24jU9PsjOf3TpLvjYvoHSBevMxvk8+XAeaSL4zqkC24tSP2EFAw2JH03IjW337/w\n/o1JF5QxpJLLOZIOr+0jb+Nq0jOwbtIzpvmkUt3zOf1WUrXeQlI111zSnX1tHyeSWiD25X/nSTqs\ntI9aFV0PKcifQLrbraXfkI8RpKCwX/FY5s/x6/xddQE/lbRnnX2MzXmdJenEUvpV+ViNIJV0PlY7\nlnkfO5BKNevmz3496RzZr7DOlnlba5GC5F75u6mlvwL4HUuC3gukktkehXUuy+9bmPdzL7lFbE7/\nMjAzf85nSC1mo5YOkPNxDqkFpEjnbzGfJ+TvpItU8t4vr1v8HD9gSTeRE0g3I8V9fJrUMGNuzuPB\npX28iRQQXpY/55Hk7iA5fRdSQL6PdPPwQQrnZt7HGcAMUhD5gKTbS+f/xsA9pBL2YuBp8rmZ08/P\n39EfcvpClj43P0EK+hNIv4MjJN1S2sfqpJuZjUkl66vzcSmmP0x65riIVEIv/45nkBoWjcslXEr7\n2IHUfqCPFMA/qELDIDMzMzMzMzMzMzMzMzMzMzMzMzMzMzMzMzMzMzMz6xARcX4ebKC/dRbnETma\nlYf/iYjhhdfLzZOZNVdHDENmthJqo8kMpc9QmMqIoc+PWeV10tRCtgrIJasLSIMyLwT+LGn/PHzb\nIaRz8knSeImKiOmk8R4XkKYFehCYJukfETEROJU0sPBqwFmSipN5DniYvUgzan+ZNNzYCOAryrOw\nR8Ri0vQy7yINrfZx5VniI+LdpNkqniWN83g8aSi0k/Kmb4w0hdMu+fXrI00ztAHwG0nFWR/MrMlc\n0rNWeyswWtLmkrYCZkaatmhfYCdJ25HGYjy38J4pwFGSNicN9F0LbPeTptvZljRo8Idz8FohkWYH\n/zbwX5ImkWbQ+GRhgGdIA1FPIg0YfUp+37qkMVb3UJqaqDY3XZ+kWjXmDpK2yeMydpFmp5ia/982\nIspz65lZE7mkZ632O2CziPg68EvSBLZ7kgajvjnHmS7SANA1N0j6S/77HJbMtrA6cEaeJmkxaS7E\nLUkT266IIM3ycEkhzg0nDTyt/PqS/P/NpGmrRpAC7e2S7s1p5wFf6mc/fcAVkl4AiIjbSYNGX7eC\n+TWzleSgZy0l6f6IeB1LJqA9kTSbwrmSPtvgbV0N/j6BNF3O+yUtjohrSdWcK6oLeERpwtpGnsv5\n782BcWV/O88X/u59Cdsxs5Xg6k1rqYhYj1T9dyVpKqCXk6Z+eX9OI8+xV5zgdEpEvDb/fRDws/z3\nmqTJVRdHxOtJ1ZIrYw6wICLeV8jnprH0rOH13AxsExGb5Nfl53NPs3SJ1cyGmIOetdpEUuOO35GC\nxgmSbiA1FLkqL/8DaX66mtnAFyPiT6RJUI/Iy48HZkTEncBnSc/7ipbXWrIPQNIiUhXr/hFxZ0T8\nkTR56PDienXe9xBpPsRrIuI2UgBfKKn2bO9k4OcRcXuelLThtszMzIiI6RHxvaHORyMRsUbh74Mi\n4vqhzI+Z9c/PE6zdtUN/u/78Z0TsS/otPUqaNdzM2tSA+zGZdaKIOBbYu07SmyU90ur8mJmZmZmZ\nmZmZmZmZmZmZmZmZmZmZmVXH/wfJIrbPDseLBgAAAABJRU5ErkJggg==\n",
"text": [
"<matplotlib.figure.Figure at 0x3f20e90>"
]
}
],
"prompt_number": 8
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"df.pivot_table(index=['class'])\n",
"df?"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 9
},
{
"cell_type": "code",
"collapsed": false,
"input": [],
"language": "python",
"metadata": {},
"outputs": []
}
],
"metadata": {}
}
]
}
\ No newline at end of file
Programming course assignments
==============================
This repository contains some assignment material for the first installment
(August 2013) of a programming course for scientists organised by the
department of Human Genetics of the Leiden University Medical Center.
See the [Trac Wiki](https://humgenprojects.lumc.nl/trac/programming-course)
for more information.
Programming course assignments
==============================
This repository contains some assignment material for the second installment
(July 2014) of a programming course for scientists organised by the department
of Human Genetics of the Leiden University Medical Center.
See the
[course website](https://humgenprojects.lumc.nl/trac/humgenprojects/wiki/ProgrammingCourse)
for more information.
Also see the [instructions on using this repository](INSTRUCTIONS.md).
#!/usr/bin/env python
class Stack(list):
def push(self, element):
self.append(element)
def __str__(self):
return str(self[-1])
class Calculator(Stack):
def add(self):
self.push(self.pop() + self.pop())
def sub(self):
temp = self.pop()
self.push(self.pop() - temp)
def mul(self):
self.push(self.pop() * self.pop())
def div(self):
temp = self.pop()
self.push(self.pop() / temp)
@HWI-ST1019:196:D121WACXX:5:1101:1538:2300/1
CCGCGACCTCTGTTCTGCAGCCCCTTCCCTTCCCCGCCTCCTGCTCTGCCGGGACTACGCACCGGCCTGATTGGTTACCCCCGGGGTGTCCTCGGTCACCA
+
1+++4)<@<A<+2A9A2++:3C8:)1?BDBDBBDC@::6@(.8..7)777:<?@@##############################################
5.1,3.5,1.4,0.2,Iris-setosa
4.9,3.0,1.4,0.2,Iris-setosa
4.7,3.2,1.3,0.2,Iris-setosa
4.6,3.1,1.5,0.2,Iris-setosa
5.0,3.6,1.4,0.2,Iris-setosa
5.4,3.9,1.7,0.4,Iris-setosa
4.6,3.4,1.4,0.3,Iris-setosa
5.0,3.4,1.5,0.2,Iris-setosa
4.4,2.9,1.4,0.2,Iris-setosa
4.9,3.1,1.5,0.1,Iris-setosa
5.4,3.7,1.5,0.2,Iris-setosa
4.8,3.4,1.6,0.2,Iris-setosa
4.8,3.0,1.4,0.1,Iris-setosa
4.3,3.0,1.1,0.1,Iris-setosa
5.8,4.0,1.2,0.2,Iris-setosa
5.7,4.4,1.5,0.4,Iris-setosa
5.4,3.9,1.3,0.4,Iris-setosa
5.1,3.5,1.4,0.3,Iris-setosa
5.7,3.8,1.7,0.3,Iris-setosa
5.1,3.8,1.5,0.3,Iris-setosa
5.4,3.4,1.7,0.2,Iris-setosa
5.1,3.7,1.5,0.4,Iris-setosa
4.6,3.6,1.0,0.2,Iris-setosa
5.1,3.3,1.7,0.5,Iris-setosa
4.8,3.4,1.9,0.2,Iris-setosa
5.0,3.0,1.6,0.2,Iris-setosa
5.0,3.4,1.6,0.4,Iris-setosa
5.2,3.5,1.5,0.2,Iris-setosa
5.2,3.4,1.4,0.2,Iris-setosa
4.7,3.2,1.6,0.2,Iris-setosa
4.8,3.1,1.6,0.2,Iris-setosa
5.4,3.4,1.5,0.4,Iris-setosa
5.2,4.1,1.5,0.1,Iris-setosa
5.5,4.2,1.4,0.2,Iris-setosa
4.9,3.1,1.5,0.1,Iris-setosa
5.0,3.2,1.2,0.2,Iris-setosa
5.5,3.5,1.3,0.2,Iris-setosa
4.9,3.1,1.5,0.1,Iris-setosa
4.4,3.0,1.3,0.2,Iris-setosa
5.1,3.4,1.5,0.2,Iris-setosa
5.0,3.5,1.3,0.3,Iris-setosa
4.5,2.3,1.3,0.3,Iris-setosa
4.4,3.2,1.3,0.2,Iris-setosa
5.0,3.5,1.6,0.6,Iris-setosa
5.1,3.8,1.9,0.4,Iris-setosa
4.8,3.0,1.4,0.3,Iris-setosa
5.1,3.8,1.6,0.2,Iris-setosa
4.6,3.2,1.4,0.2,Iris-setosa
5.3,3.7,1.5,0.2,Iris-setosa
5.0,3.3,1.4,0.2,Iris-setosa
7.0,3.2,4.7,1.4,Iris-versicolor
6.4,3.2,4.5,1.5,Iris-versicolor
6.9,3.1,4.9,1.5,Iris-versicolor
5.5,2.3,4.0,1.3,Iris-versicolor
6.5,2.8,4.6,1.5,Iris-versicolor
5.7,2.8,4.5,1.3,Iris-versicolor
6.3,3.3,4.7,1.6,Iris-versicolor
4.9,2.4,3.3,1.0,Iris-versicolor
6.6,2.9,4.6,1.3,Iris-versicolor
5.2,2.7,3.9,1.4,Iris-versicolor
5.0,2.0,3.5,1.0,Iris-versicolor
5.9,3.0,4.2,1.5,Iris-versicolor
6.0,2.2,4.0,1.0,Iris-versicolor
6.1,2.9,4.7,1.4,Iris-versicolor
5.6,2.9,3.6,1.3,Iris-versicolor
6.7,3.1,4.4,1.4,Iris-versicolor
5.6,3.0,4.5,1.5,Iris-versicolor
5.8,2.7,4.1,1.0,Iris-versicolor
6.2,2.2,4.5,1.5,Iris-versicolor
5.6,2.5,3.9,1.1,Iris-versicolor
5.9,3.2,4.8,1.8,Iris-versicolor
6.1,2.8,4.0,1.3,Iris-versicolor
6.3,2.5,4.9,1.5,Iris-versicolor
6.1,2.8,4.7,1.2,Iris-versicolor
6.4,2.9,4.3,1.3,Iris-versicolor
6.6,3.0,4.4,1.4,Iris-versicolor
6.8,2.8,4.8,1.4,Iris-versicolor
6.7,3.0,5.0,1.7,Iris-versicolor
6.0,2.9,4.5,1.5,Iris-versicolor
5.7,2.6,3.5,1.0,Iris-versicolor
5.5,2.4,3.8,1.1,Iris-versicolor
5.5,2.4,3.7,1.0,Iris-versicolor
5.8,2.7,3.9,1.2,Iris-versicolor
6.0,2.7,5.1,1.6,Iris-versicolor
5.4,3.0,4.5,1.5,Iris-versicolor
6.0,3.4,4.5,1.6,Iris-versicolor
6.7,3.1,4.7,1.5,Iris-versicolor
6.3,2.3,4.4,1.3,Iris-versicolor
5.6,3.0,4.1,1.3,Iris-versicolor
5.5,2.5,4.0,1.3,Iris-versicolor
5.5,2.6,4.4,1.2,Iris-versicolor
6.1,3.0,4.6,1.4,Iris-versicolor
5.8,2.6,4.0,1.2,Iris-versicolor
5.0,2.3,3.3,1.0,Iris-versicolor
5.6,2.7,4.2,1.3,Iris-versicolor
5.7,3.0,4.2,1.2,Iris-versicolor
5.7,2.9,4.2,1.3,Iris-versicolor
6.2,2.9,4.3,1.3,Iris-versicolor
5.1,2.5,3.0,1.1,Iris-versicolor
5.7,2.8,4.1,1.3,Iris-versicolor
6.3,3.3,6.0,2.5,Iris-virginica
5.8,2.7,5.1,1.9,Iris-virginica
7.1,3.0,5.9,2.1,Iris-virginica
6.3,2.9,5.6,1.8,Iris-virginica
6.5,3.0,5.8,2.2,Iris-virginica
7.6,3.0,6.6,2.1,Iris-virginica
4.9,2.5,4.5,1.7,Iris-virginica
7.3,2.9,6.3,1.8,Iris-virginica
6.7,2.5,5.8,1.8,Iris-virginica
7.2,3.6,6.1,2.5,Iris-virginica
6.5,3.2,5.1,2.0,Iris-virginica
6.4,2.7,5.3,1.9,Iris-virginica
6.8,3.0,5.5,2.1,Iris-virginica
5.7,2.5,5.0,2.0,Iris-virginica
5.8,2.8,5.1,2.4,Iris-virginica
6.4,3.2,5.3,2.3,Iris-virginica
6.5,3.0,5.5,1.8,Iris-virginica
7.7,3.8,6.7,2.2,Iris-virginica
7.7,2.6,6.9,2.3,Iris-virginica
6.0,2.2,5.0,1.5,Iris-virginica
6.9,3.2,5.7,2.3,Iris-virginica
5.6,2.8,4.9,2.0,Iris-virginica
7.7,2.8,6.7,2.0,Iris-virginica
6.3,2.7,4.9,1.8,Iris-virginica
6.7,3.3,5.7,2.1,Iris-virginica
7.2,3.2,6.0,1.8,Iris-virginica
6.2,2.8,4.8,1.8,Iris-virginica
6.1,3.0,4.9,1.8,Iris-virginica
6.4,2.8,5.6,2.1,Iris-virginica
7.2,3.0,5.8,1.6,Iris-virginica
7.4,2.8,6.1,1.9,Iris-virginica
7.9,3.8,6.4,2.0,Iris-virginica
6.4,2.8,5.6,2.2,Iris-virginica
6.3,2.8,5.1,1.5,Iris-virginica
6.1,2.6,5.6,1.4,Iris-virginica
7.7,3.0,6.1,2.3,Iris-virginica
6.3,3.4,5.6,2.4,Iris-virginica
6.4,3.1,5.5,1.8,Iris-virginica
6.0,3.0,4.8,1.8,Iris-virginica
6.9,3.1,5.4,2.1,Iris-virginica
6.7,3.1,5.6,2.4,Iris-virginica
6.9,3.1,5.1,2.3,Iris-virginica
5.8,2.7,5.1,1.9,Iris-virginica
6.8,3.2,5.9,2.3,Iris-virginica
6.7,3.3,5.7,2.5,Iris-virginica
6.7,3.0,5.2,2.3,Iris-virginica
6.3,2.5,5.0,1.9,Iris-virginica
6.5,3.0,5.2,2.0,Iris-virginica
6.2,3.4,5.4,2.3,Iris-virginica
5.9,3.0,5.1,1.8,Iris-virginica
1. Title: Iris Plants Database
Updated Sept 21 by C.Blake - Added discrepency information
2. Sources:
(a) Creator: R.A. Fisher
(b) Donor: Michael Marshall (MARSHALL%PLU@io.arc.nasa.gov)
(c) Date: July, 1988
3. Past Usage:
- Publications: too many to mention!!! Here are a few.
1. Fisher,R.A. "The use of multiple measurements in taxonomic problems"
Annual Eugenics, 7, Part II, 179-188 (1936); also in "Contributions
to Mathematical Statistics" (John Wiley, NY, 1950).
2. Duda,R.O., & Hart,P.E. (1973) Pattern Classification and Scene Analysis.
(Q327.D83) John Wiley & Sons. ISBN 0-471-22361-1. See page 218.
3. Dasarathy, B.V. (1980) "Nosing Around the Neighborhood: A New System
Structure and Classification Rule for Recognition in Partially Exposed
Environments". IEEE Transactions on Pattern Analysis and Machine
Intelligence, Vol. PAMI-2, No. 1, 67-71.
-- Results:
-- very low misclassification rates (0% for the setosa class)
4. Gates, G.W. (1972) "The Reduced Nearest Neighbor Rule". IEEE
Transactions on Information Theory, May 1972, 431-433.
-- Results:
-- very low misclassification rates again
5. See also: 1988 MLC Proceedings, 54-64. Cheeseman et al's AUTOCLASS II
conceptual clustering system finds 3 classes in the data.
4. Relevant Information:
--- This is perhaps the best known database to be found in the pattern
recognition literature. Fisher's paper is a classic in the field
and is referenced frequently to this day. (See Duda & Hart, for
example.) The data set contains 3 classes of 50 instances each,
where each class refers to a type of iris plant. One class is
linearly separable from the other 2; the latter are NOT linearly
separable from each other.
--- Predicted attribute: class of iris plant.
--- This is an exceedingly simple domain.
--- This data differs from the data presented in Fishers article
(identified by Steve Chadwick, spchadwick@espeedaz.net )
The 35th sample should be: 4.9,3.1,1.5,0.2,"Iris-setosa"
where the error is in the fourth feature.
The 38th sample: 4.9,3.6,1.4,0.1,"Iris-setosa"
where the errors are in the second and third features.
5. Number of Instances: 150 (50 in each of three classes)
6. Number of Attributes: 4 numeric, predictive attributes and the class
7. Attribute Information:
1. sepal length in cm
2. sepal width in cm
3. petal length in cm
4. petal width in cm
5. class:
-- Iris Setosa
-- Iris Versicolour
-- Iris Virginica
8. Missing Attribute Values: None
Summary Statistics:
Min Max Mean SD Class Correlation
sepal length: 4.3 7.9 5.84 0.83 0.7826
sepal width: 2.0 4.4 3.05 0.43 -0.4194
petal length: 1.0 6.9 3.76 1.76 0.9490 (high!)
petal width: 0.1 2.5 1.20 0.76 0.9565 (high!)
9. Class Distribution: 33.3% for each of 3 classes.
@IRIS:7:1:17:394#0/1
GTCAGGACAAGAAAGACAANTCCAATTNACATTATG
+IRIS:7:1:17:394#0/1
aaabaa`]baaaaa_aab]D^^`b`aYDW]abaa`^
@IRIS:7:1:17:800#0/2
GGAAACACTACTTAGGCTTATAAGATCNGGTTGCGG
+IRIS:7:1:17:800#0/2
ababbaaabaaaaa`]`ba`]`aaaaYD\\_a``XT
@IRIS:7:1:17:1757#0/1
TTTTCTCGACGATTTCCACTCCTGGTCNACGAATCC
+IRIS:7:1:17:1757#0/1
aaaaaa``aaa`aaaa_^a```]][Z[DY^XYV^_Y
@IRIS:7:1:17:1479#0/2
CATATTGTAGGGTGGATCTCGAAAGATATGAAAGAT
+IRIS:7:1:17:1479#0/2
abaaaaa`a```^aaaaa`_]aaa`aaa__a_X]``
@IRIS:7:1:17:150#0/1
TGATGTACTATGCATATGAACTTGTATGCAAAGTGG
+IRIS:7:1:17:150#0/1
abaabaa`aaaaaaa^ba_]]aaa^aaaaa_^][aa
@IRIS:7:1:18:443#0/2
CGATTCCACGTGATCAAAGAAACTAGAGTGGGTCTG
+IRIS:7:1:18:443#0/2
abbbbbababababababbaaaababababa``aaa
@IRIS:7:1:18:622#0/1
TGGGCTCCGGGAGGGGGGGATGTAAGAAAAATTACA
+IRIS:7:1:18:622#0/1
ababaaaabaa_``aa``]^aa_`aa_Z_aaaaa^b
@IRIS:7:1:18:628#0/2
AAAACAATTAGATGATGATAAAATTAACAAAGATTG
+IRIS:7:1:18:628#0/2
aaaaaaaaaaaaaaaaaa`^```a`aaa`^`a`a^a
@IRIS:7:1:18:1642#0/1
AATAAGTTTTAAACAGCTAACCTTGTTTACTTCTTT
+IRIS:7:1:18:1642#0/1
aaaaaa_aaababba_baa\aaaaa`a`baaaaa`a
@IRIS:7:1:18:1260#0/2
AGATGTACAAATTTGTATTTCAAGACAGATTTATAA
+IRIS:7:1:18:1260#0/2
abaab`bab`abaab`bbaaab_babb]aaaabba^
@IRIS:7:1:18:16#0/1
AGGTTCGTGTTGAGTGTTGCCTCTTTTTCTGTTAAT
+IRIS:7:1:18:16#0/1
abb`bbbabbbaWa`baba_Z``babaa[_aa`\X_
@IRIS:7:1:18:1150#0/2
AGCTAGGTAAAGTTATACATACAGATGGCCGAACTT
+IRIS:7:1:18:1150#0/2
abaaabb^bbabaabbbaaaaaaaaa`W^`a`_^``
@IRIS:7:1:18:1819#0/1
CTTACCGCGGTTTTAATAATTTTACCATCACTTCGT
+IRIS:7:1:18:1819#0/1
abbbbbbbba[aba``ba`bbba^]]``___]`_^W
@IRIS:7:1:18:1232#0/2
AAGAAATATATCGAAGAGTTAGTGCTGGACTGGCTG
+IRIS:7:1:18:1232#0/2
a^aY\Y^]^Y[WYUBBBBBBBBBBBBBBBBBBBBBB
@IRIS:7:1:19:1343#0/1
GGCATCTCCAGAGGAGGCTGTACCTGTGGAATAGCA
+IRIS:7:1:19:1343#0/1
abbbbbbbbababaaba_a\FXQXNVKO^F[RWYSQ
@IRIS:7:1:19:1885#0/2
TGAATTTCAATACGTGCAATTCCCTCCATACCAGAG
+IRIS:7:1:19:1885#0/2
abbbbbbbbbbbabaa[a_aba_^aa^_a``UZaab
@IRIS:7:1:19:691#0/1
GACATGAATTGTGTTTTAGGATAATTGATTAAAAAT
+IRIS:7:1:19:691#0/1
aaabbb`aaab`baaaaaba`aaababaaaaaaaab
@IRIS:7:1:19:1159#0/2
CAAGAATCATACTCAACATGCAAGCGATGATGAACA
+IRIS:7:1:19:1159#0/2
`a^`bbabba\_a^[_a\\]][GY]YBBBBBBBBBB
@IRIS:7:1:19:1310#0/1
GGAGATGATTTGACGATTCGCAGTCGGATCATCTGC
+IRIS:7:1:19:1310#0/1
aaabbabbabbbbbbbbbbbbbbabbbaabaa^a^Z
@IRIS:7:1:19:1108#0/2
GGATAATAAGCTCATGGGTTTGGTCTTACTTCACCG
+IRIS:7:1:19:1108#0/2
abaaaaaaaaaaaaaaa`^aaaa]]a``_a`aa^_Z
Source diff could not be displayed: it is too large. Options to address this: view the blob.
@HWI-ST1019:196:D121WACXX:5:1101:1538:2300/1
CCGCGACCTCTGTTCTGCAGCCCCTTCCCTTCCCCGCCTCCTGCTCTGCCGGGACTACGCACCGGCCTGATTGGTTACCCCCGGGGTGTCCTCGGTCACCA
+
1+++4)<@<A<+2A9A2++:3C8:)1?BDBDBBDC@::6@(.8..7)777:<?@@##############################################
@HWI-ST1019:196:D121WACXX:5:1101:1538:2300/2
CCGCGACCTCTGTTCTGCAGCCCCTTCCCTTCCCCGCCTCCTGCTCTGCCGGGACTACGCACCGGCCTGATTGGTTACCCCCGGGGTGTCCTCGGTCACCA
+
1+++4)<@<A<+2A9A2++:3C8:)1?BDBDBBDC@::6@(.8..7)777:<?@@##############################################
File added
File added
>sp|P12464|RPOE_BACSU DNA-directed RNA polymerase subunit delta OS=Bacillus subtilis (strain 168) GN=rpoE PE=1 SV=1
MGIKQYSQEELKEMALVEIAHELFEEHKKPVPFQELLNEIASLLGVKKEELGDRIAQFYT
DLNIDGRFLALSDQTWGLRSWYPYDQLDEETQPTVKAKKKKAKKAVEEDLDLDEFEEIDE
DDLDLDEVEEELDLEADDFDEEDLDEDDDDLEIEEDIIDEDDEDYDDEEEEIK