BammetricsReport.scala 22.4 KB
Newer Older
Peter van 't Hof's avatar
Peter van 't Hof committed
1
/**
2
3
4
5
6
7
8
9
10
11
12
13
14
  * Biopet is built on top of GATK Queue for building bioinformatic
  * pipelines. It is mainly intended to support LUMC SHARK cluster which is running
  * SGE. But other types of HPC that are supported by GATK Queue (such as PBS)
  * should also be able to execute Biopet tools and pipelines.
  *
  * Copyright 2014 Sequencing Analysis Support Core - Leiden University Medical Center
  *
  * Contact us at: sasc@lumc.nl
  *
  * A dual licensing mode is applied. The source code within this project is freely available for non-commercial use under an AGPL
  * license; For commercial users or users who do not want to follow the AGPL
  * license, please contact us to obtain a separate license.
  */
15
16
package nl.lumc.sasc.biopet.pipelines.bammetrics

17
import java.io.{File, PrintWriter}
18

Peter van 't Hof's avatar
Peter van 't Hof committed
19
import nl.lumc.sasc.biopet.utils.config.Configurable
20
21
22
23
24
25
import nl.lumc.sasc.biopet.core.report.{
  ReportBuilder,
  ReportBuilderExtension,
  ReportPage,
  ReportSection
}
Peter van 't Hof's avatar
Peter van 't Hof committed
26
import nl.lumc.sasc.biopet.utils.ConfigUtils
27
import nl.lumc.sasc.biopet.utils.rscript.{LinePlot, StackedBarPlot}
Peter van 't Hof's avatar
Peter van 't Hof committed
28
import nl.lumc.sasc.biopet.utils.summary.db.SummaryDb
Peter van 't Hof's avatar
Peter van 't Hof committed
29
30
import nl.lumc.sasc.biopet.utils.summary.db.SummaryDb.Implicts._
import nl.lumc.sasc.biopet.utils.summary.db.SummaryDb._
31
import nl.lumc.sasc.biopet.utils.summary.db.Schema._
32

33
import scala.collection.mutable.ArrayBuffer
34
import scala.concurrent.{Await, Future}
Peter van 't Hof's avatar
Peter van 't Hof committed
35
import scala.concurrent.duration.Duration
36

Peter van 't Hof's avatar
Peter van 't Hof committed
37
class BammetricsReport(val parent: Configurable) extends ReportBuilderExtension {
38
  def builder = BammetricsReport
39
}
40

41
/**
42
43
44
45
  * Object to create a report for [[BamMetrics]]
  *
  * Created by pjvan_thof on 3/30/15.
  */
46
object BammetricsReport extends ReportBuilder {
47

48
  /** Name of report */
49
50
  val reportName = "Bam Metrics"

51
52
  def pipelineName = "bammetrics"

53
  /** Root page for single BamMetrcis report */
Peter van 't Hof's avatar
Peter van 't Hof committed
54
55
  def indexPage: Future[ReportPage] =
    bamMetricsPage(summary, sampleId, libId).map { bamMetricsPage =>
56
57
58
59
60
61
62
63
64
65
66
67
68
      ReportPage(
        bamMetricsPage.subPages ::: List(
          "Versions" -> Future(
            ReportPage(List(),
                       List("Executables" -> ReportSection(
                         "/nl/lumc/sasc/biopet/core/report/executables.ssp")),
                       Map())),
          "Files" -> filesPage(sampleId, libId)
        ),
        List(
          "Report" -> ReportSection(
            "/nl/lumc/sasc/biopet/pipelines/bammetrics/bamMetricsFront.ssp")
        ) ::: bamMetricsPage.sections,
Peter van 't Hof's avatar
Peter van 't Hof committed
69
70
71
        Map()
      )
    }
72

73
  /** Generates a page with alignment stats */
Peter van 't Hof's avatar
Peter van 't Hof committed
74
75
76
  def bamMetricsPage(summary: SummaryDb,
                     sampleId: Option[Int],
                     libId: Option[Int],
Peter van 't Hof's avatar
Peter van 't Hof committed
77
                     metricsTag: String = "bammetrics"): Future[ReportPage] = Future {
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
    val wgsExecuted = summary.getStatsSize(runId,
                                           metricsTag,
                                           "wgs",
                                           sample = sampleId.map(SampleId),
                                           library = libId.map(LibraryId)) >= 1
    val rnaExecuted = summary.getStatsSize(runId,
                                           metricsTag,
                                           "rna",
                                           sample = sampleId.map(SampleId),
                                           library = libId.map(LibraryId)) >= 1

    val insertsizeMetrics = summary
      .getStatKeys(
        runId,
        metricsTag,
        "CollectInsertSizeMetrics",
        sampleId.map(SampleId).getOrElse(NoSample),
        libId.map(LibraryId).getOrElse(NoLibrary),
        Map("metrics" -> List("metrics"))
      )
Peter van 't Hof's avatar
Peter van 't Hof committed
98
      .exists(_._2.isDefined)
99

100
101
102
103
104
105
106
107
    val targetSettings = summary.getSettingKeys(
      runId,
      metricsTag,
      NoModule,
      sample = sampleId.map(SampleId).getOrElse(NoSample),
      library = libId.map(LibraryId).getOrElse(NoLibrary),
      Map("amplicon_name" -> List("amplicon_name"), "roi_name" -> List("roi_name"))
    )
108
    val targets = (
Peter van 't Hof's avatar
Peter van 't Hof committed
109
110
      targetSettings("amplicon_name"),
      targetSettings("roi_name")
Peter van 't Hof's avatar
Peter van 't Hof committed
111
    ) match {
112
113
114
115
      case (Some(amplicon: String), Some(roi: List[_])) => amplicon :: roi.map(_.toString)
      case (_, Some(roi: List[_])) => roi.map(_.toString)
      case _ => Nil
    }
116
117

    ReportPage(
Peter van 't Hof's avatar
Peter van 't Hof committed
118
      if (targets.isEmpty) List()
119
120
121
122
123
124
125
126
127
      else
        List(
          "Targets" -> Future.successful(
            ReportPage(
              List(),
              targets.map(t =>
                t -> ReportSection("/nl/lumc/sasc/biopet/pipelines/bammetrics/covstatsPlot.ssp",
                                   Map("target" -> Some(t)))),
              Map()))),
128
      List(
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
        "Summary" -> ReportSection(
          "/nl/lumc/sasc/biopet/pipelines/bammetrics/alignmentSummary.ssp"),
        "Mapping Quality" -> ReportSection(
          "/nl/lumc/sasc/biopet/pipelines/bammetrics/mappingQuality.ssp",
          Map("showPlot" -> true)),
        "Clipping" -> ReportSection("/nl/lumc/sasc/biopet/pipelines/bammetrics/clipping.ssp",
                                    Map("showPlot" -> true))
      ) ++
        (if (insertsizeMetrics)
           List(
             "Insert Size" -> ReportSection(
               "/nl/lumc/sasc/biopet/pipelines/bammetrics/insertSize.ssp",
               Map("showPlot" -> true)))
         else Nil) ++ (if (wgsExecuted)
                         List(
                           "Whole genome coverage" -> ReportSection(
                             "/nl/lumc/sasc/biopet/pipelines/bammetrics/wgsHistogram.ssp",
                             Map("showPlot" -> true)))
                       else Nil) ++
        (if (rnaExecuted)
           List(
             "Rna coverage" -> ReportSection(
               "/nl/lumc/sasc/biopet/pipelines/bammetrics/rnaHistogram.ssp",
               Map("showPlot" -> true)))
         else Nil),
154
      Map("metricsTag" -> metricsTag)
155
156
157
    )
  }

158
  /**
159
    * Generates the lines for alignmentSummaryPlot
160
161
162
    *
    * @param summary Summary class
    * @param sampleId Default it selects all sampples, when sample is giving it limits to selected sample
163
    *                     * @param libraryLevel Default false, when set true plot will be based on library stats instead of sample stats
164
    */
165
  def alignmentSummaryPlotLines(summary: SummaryDb,
166
                                sampleId: Option[Int] = None,
167
                                libraryLevel: Boolean = false): Seq[String] = {
Peter van 't Hof's avatar
Peter van 't Hof committed
168
169
170
171
172
173
174
175
    val statsPaths = Map(
      "Mapped" -> List("flagstats", "Mapped"),
      "Duplicates" -> List("flagstats", "Duplicates"),
      "All" -> List("flagstats", "All"),
      "NotPrimaryAlignment" -> List("flagstats", "NotPrimaryAlignment")
    )

    val results: Map[(Int, Option[Int]), Map[String, Option[Any]]] = if (libraryLevel) {
176
177
      summary
        .getStatsForLibraries(runId,
178
179
180
181
                              "bammetrics",
                              "bamstats",
                              sampleId = sampleId,
                              keyValues = statsPaths)
182
183
184
185
        .map(x => (x._1._1, Some(x._1._2)) -> x._2)
    } else
      summary
        .getStatsForSamples(runId,
186
187
188
189
                            "bammetrics",
                            "bamstats",
                            sample = sampleId.map(SampleId),
                            keyValues = statsPaths)
190
        .map(x => (x._1, None) -> x._2)
191
    val summaryPlotLines = ArrayBuffer[String]()
Peter van 't Hof's avatar
Peter van 't Hof committed
192

Peter van 't Hof's avatar
Peter van 't Hof committed
193
    for (((s, l), result) <- results) {
Peter van 't Hof's avatar
Peter van 't Hof committed
194
      val sampleName: String = summary.getSampleName(s).map(_.get)
195
196
      val libName: Option[String] =
        l.flatMap(x => Await.result(summary.getLibraryName(x), Duration.Inf))
197
      val sb = new StringBuffer()
198
199
      if (libName.isDefined) sb.append(sampleName + "-" + libName.get + "\t")
      else sb.append(sampleName + "\t")
Peter van 't Hof's avatar
Peter van 't Hof committed
200
201
202
203
      val mapped = ConfigUtils.any2long(result("Mapped"))
      val duplicates = ConfigUtils.any2long(result("Duplicates"))
      val total = ConfigUtils.any2long(result("All"))
      val secondary = ConfigUtils.any2long(result("NotPrimaryAlignment"))
Peter van 't Hof's avatar
Peter van 't Hof committed
204
      sb.append((mapped - duplicates - secondary) + "\t")
205
      sb.append(duplicates + "\t")
Peter van 't Hof's avatar
Peter van 't Hof committed
206
      sb.append((total - mapped) + "\t")
207
      sb.append(secondary)
208
      summaryPlotLines += sb.toString
209
    }
210
211
212
213
214
215
216
217
218
219
220
221
222
223
    summaryPlotLines
  }

  /**
    * Generate a stackbar plot for alignment stats
    *
    * @param outputDir OutputDir for the tsv and png file
    * @param prefix Prefix of the tsv and png file
    * @param summaryPlotLines A sequence of strings written to the summary tsv
    * @param libraryLevel Default false, when set true plot will be based on library stats instead of sample stats
    */
  def alignmentSummaryPlot(outputDir: File,
                           prefix: String,
                           summaryPlotLines: Seq[String],
224
                           libraryLevel: Boolean = false): Unit = {
225
226
227
228
229
    val tsvFile = new File(outputDir, prefix + ".tsv")
    val pngFile = new File(outputDir, prefix + ".png")
    val tsvWriter = new PrintWriter(tsvFile)
    if (libraryLevel) tsvWriter.print("Library") else tsvWriter.print("Sample")
    tsvWriter.println("\tMapped\tDuplicates\tUnmapped\tSecondary")
230

231
232
233
    for (line <- summaryPlotLines) {
      tsvWriter.println(line)
    }
234
235
236
237
238
239
    tsvWriter.close()

    val plot = new StackedBarPlot(null)
    plot.input = tsvFile
    plot.output = pngFile
    plot.ylabel = Some("Reads")
240
    plot.width = Some(200 + (summaryPlotLines.size * 10))
Peter van 't Hof's avatar
WIP    
Peter van 't Hof committed
241
    plot.title = Some("Aligned_reads")
242
243
    plot.runLocal()
  }
244

245
246
247
248
249
250
251
252
253
254
255
  /**
    * This is a generic method to create plots
    * @param libraryLevel If enabled the plots will show data per library
    * @param sampleId If set only this sample is shown
    * @param libraryId If set onlt this library is shown
    * @param statsPaths Paths in summary where the tables can be found
    * @param yKeyList Keys to search from, first has prio over second one
    * @param xKeyList Keys to search from, first has prio over second one
    * @param pipeline Query for the pipeline
    * @param module Query for the module
    */
256
257
258
259
260
261
262
  def summaryForPlot(summary: SummaryDb,
                     statsPaths: Map[String, List[String]],
                     yKeyList: List[String],
                     xKeyList: List[String],
                     pipeline: PipelineQuery,
                     module: ModuleQuery,
                     libraryLevel: Boolean = false,
263
                     sampleId: Option[Int] = None,
264
                     libraryId: Option[Int] = None): Array[Map[String, Array[Any]]] = {
Peter van 't Hof's avatar
Peter van 't Hof committed
265
    val results: Map[(Int, Option[Int]), Map[String, Option[Array[Any]]]] = if (libraryLevel) {
266
267
268
269
270
271
272
273
      summary
        .getStatsForLibraries(runId, pipeline, module, sampleId = sampleId, keyValues = statsPaths)
        .map(x =>
          (x._1._1, Some(x._1._2)) -> x._2.map(x =>
            x._1 -> x._2.map(ConfigUtils.any2list(_).toArray)))
    } else
      summary
        .getStatsForSamples(runId,
274
275
276
277
                            pipeline,
                            module,
                            sample = sampleId.map(SampleId),
                            keyValues = statsPaths)
278
        .map(x => (x._1, None) -> x._2.map(x => x._1 -> x._2.map(ConfigUtils.any2list(_).toArray)))
Peter van 't Hof's avatar
Peter van 't Hof committed
279
280
    val tables: Array[Map[String, Array[Any]]] = results.map {
      case ((sample, library), map) =>
281
282
        val sampleName = Await
          .result(summary.getSampleName(sample), Duration.Inf)
Peter van 't Hof's avatar
Peter van 't Hof committed
283
          .getOrElse(throw new IllegalStateException("Sample must be there"))
284
285
        val libraryName =
          library.flatMap(l => Await.result(summary.getLibraryName(l), Duration.Inf))
Peter van 't Hof's avatar
Peter van 't Hof committed
286
287
        val yKey = yKeyList.find(x => map.contains(x) && map(x).isDefined).getOrElse("none")
        val xKey = xKeyList.find(x => map.contains(x) && map(x).isDefined).getOrElse("none")
Peter van 't Hof's avatar
Peter van 't Hof committed
288
        Map(
Peter van 't Hof's avatar
Peter van 't Hof committed
289
290
291
292
          yKeyList.head -> map.getOrElse(yKey, None).getOrElse(Array()),
          (sampleName + libraryName.map("-" + _).getOrElse("")) -> map
            .getOrElse(xKey, None)
            .getOrElse(Array())
Peter van 't Hof's avatar
Peter van 't Hof committed
293
        )
Peter van 't Hof's avatar
Peter van 't Hof committed
294
    }.toArray
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
    tables
  }

  /**
    * This is a generic method to create plots
    * @param outputDir Outputdir of the plot
    * @param prefix Files will start with this name
    * @param tables Tables to be written
    * @param yKeyList Keys to search from, first has prio over second one
    * @param xKeyList Keys to search from, first has prio over second one
    * @param xlabel X label shown on the plot
    * @param ylabel Y label shown on the plot
    * @param title Title of the plot
    * @param removeZero
    */
  def writePlotFromSummary(outputDir: File,
                           prefix: String,
                           tables: Array[Map[String, Array[Any]]],
                           yKeyList: List[String],
314
                           xKeyList: List[String],
315
316
317
318
319
320
                           xlabel: Option[String] = None,
                           ylabel: Option[String] = None,
                           title: Option[String] = None,
                           removeZero: Boolean = true): Unit = {
    val tsvFile = new File(outputDir, prefix + ".tsv")
    val pngFile = new File(outputDir, prefix + ".png")
Peter van 't Hof's avatar
Peter van 't Hof committed
321

322
    writeTableToTsv(tsvFile, mergeTables(tables, yKeyList.head), yKeyList.head)
Peter van 't Hof's avatar
Peter van 't Hof committed
323

324
325
326
327
328
329
330
331
332
333
    LinePlot(
      tsvFile,
      pngFile,
      xlabel = xlabel,
      ylabel = ylabel,
      title = title,
      hideLegend = tables.size > 40,
      /* changed from results.size. Original results in summaryForPlot*/
      removeZero = removeZero
    ).runLocal()
Peter van 't Hof's avatar
Peter van 't Hof committed
334
335
  }

336
337
338
339
340
  def insertSizePlotTables(summary: SummaryDb,
                           libraryLevel: Boolean = false,
                           sampleId: Option[Int] = None,
                           libraryId: Option[Int] = None): Array[Map[String, Array[Any]]] = {}

341
  /**
342
343
344
345
346
347
348
349
    * Generate a line plot for insertsize
    *
    * @param outputDir OutputDir for the tsv and png file
    * @param prefix Prefix of the tsv and png file
    * @param summary Summary class
    * @param libraryLevel Default false, when set true plot will be based on library stats instead of sample stats
    * @param sampleId Default it selects all sampples, when sample is giving it limits to selected sample
    */
Peter van 't Hof's avatar
Peter van 't Hof committed
350
  def insertSizePlot(outputDir: File,
Peter van 't Hof's avatar
Peter van 't Hof committed
351
                     prefix: String,
352
                     insertSizePlotTables: Array[Map[String, Array[Any]]]): Unit = {
Peter van 't Hof's avatar
Peter van 't Hof committed
353
354
    val statsPaths = Map(
      "insert_size" -> List("histogram", "insert_size"),
Peter van 't Hof's avatar
Peter van 't Hof committed
355
      "count" -> List("histogram", "All_Reads.fr_count")
Peter van 't Hof's avatar
Peter van 't Hof committed
356
    )
Peter van 't Hof's avatar
Peter van 't Hof committed
357

358
359
360
    writePlotFromSummary(
      outputDir,
      prefix,
361
      insertSizePlotTables,
362
363
364
365
      libraryLevel,
      sampleId,
      libraryId,
      statsPaths,
366
367
      "insert_size" :: Nil,
      "count" :: Nil,
368
369
370
371
372
373
      "bammetrics",
      "CollectInsertSizeMetrics",
      "Insert size",
      "Reads",
      "Insert size"
    )
Peter van 't Hof's avatar
Peter van 't Hof committed
374
  }
Peter van 't Hof's avatar
Peter van 't Hof committed
375

376
377
378
379
  def mappingQualityPlotTables(summary: SummaryDb,
                               libraryLevel: Boolean = false,
                               sampleId: Option[Int] = None,
                               libraryId: Option[Int] = None): Array[Map[String, Array[Any]]] = {
Peter van 't Hof's avatar
Peter van 't Hof committed
380
381
382
    val statsPaths = Map(
      "mapping_quality" -> List("mapping_quality", "histogram", "values"),
      "count" -> List("mapping_quality", "histogram", "counts")
383
    )
384
385
386
387
388
389
390
391
392
393
    val plotTables: Array[Map[String, Array[Any]]] = summaryForPlot(summary,
                                                                    statsPaths,
                                                                    "mapping_quality" :: Nil,
                                                                    "count" :: Nil,
                                                                    "bammetrics",
                                                                    "bamstats",
                                                                    libraryLevel,
                                                                    sampleId,
                                                                    libraryId)
    plotTables
394
395
  }

396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
  def mappingQualityPlot(outputDir: File,
                         prefix: String,
                         mappingQualityPlotTables: Array[Map[String, Array[Any]]]): Unit = {
    writePlotFromSummary(outputDir,
                         prefix,
                         mappingQualityPlotTables,
                         "mapping_quality" :: Nil,
                         "count" :: Nil,
                         "Mapping Quality",
                         "Reads",
                         "Mapping Quality")
  }
  def clippingPlotTables(summary: SummaryDb,
                         libraryLevel: Boolean = false,
                         sampleId: Option[Int] = None,
                         libraryId: Option[Int] = None): Array[Map[String, Array[Any]]] = {}
412
  def clippingPlot(outputDir: File,
Peter van 't Hof's avatar
Peter van 't Hof committed
413
                   prefix: String,
414
                   clippingPlotTables: Array[Map[String, Array[Any]]],
Peter van 't Hof's avatar
Peter van 't Hof committed
415
                   libraryLevel: Boolean = false,
Peter van 't Hof's avatar
Peter van 't Hof committed
416
                   sampleId: Option[Int] = None,
Peter van 't Hof's avatar
Peter van 't Hof committed
417
418
419
420
                   libraryId: Option[Int] = None): Unit = {
    val statsPaths = Map(
      "clipping" -> List("clipping", "histogram", "values"),
      "count" -> List("clipping", "histogram", "counts")
421
422
    )

423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
    writePlotFromSummary(
      outputDir,
      prefix,
      summary,
      libraryLevel,
      sampleId,
      libraryId,
      statsPaths,
      "clipping" :: Nil,
      "count" :: Nil,
      "bammetrics",
      "bamstats",
      "Clipping",
      "Reads",
      "Clipping"
    )
439
440
  }

441
  /**
442
443
444
445
446
447
448
449
    * Generate a line plot for wgs coverage
    *
    * @param outputDir OutputDir for the tsv and png file
    * @param prefix Prefix of the tsv and png file
    * @param summary Summary class
    * @param libraryLevel Default false, when set true plot will be based on library stats instead of sample stats
    * @param sampleId Default it selects all sampples, when sample is giving it limits to selected sample
    */
Peter van 't Hof's avatar
Peter van 't Hof committed
450
  def wgsHistogramPlot(outputDir: File,
Peter van 't Hof's avatar
Peter van 't Hof committed
451
                       prefix: String,
452
                       tables: Array[Map[String, Array[Any]]],
Peter van 't Hof's avatar
Peter van 't Hof committed
453
                       libraryLevel: Boolean = false,
Peter van 't Hof's avatar
Peter van 't Hof committed
454
                       sampleId: Option[Int] = None,
Peter van 't Hof's avatar
Peter van 't Hof committed
455
456
                       libraryId: Option[Int] = None): Unit = {
    val statsPaths = Map(
Peter van 't Hof's avatar
Peter van 't Hof committed
457
      "coverage" -> List("histogram", "coverage"),
458
459
      "count" -> List("histogram", "count"),
      "high_quality_coverage_count" -> List("histogram", "high_quality_coverage_count")
Peter van 't Hof's avatar
Peter van 't Hof committed
460
    )
Peter van 't Hof's avatar
Peter van 't Hof committed
461

462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
    writePlotFromSummary(
      outputDir,
      prefix,
      summary,
      libraryLevel,
      sampleId,
      libraryId,
      statsPaths,
      "coverage" :: Nil,
      "count" :: "high_quality_coverage_count" :: Nil,
      "bammetrics",
      "wgs",
      "Coverage",
      "Bases",
      "Whole genome coverage"
    )
Peter van 't Hof's avatar
Peter van 't Hof committed
478
  }
Peter van 't Hof's avatar
Peter van 't Hof committed
479
480

  /**
481
482
483
484
485
486
487
488
    * Generate a line plot for rna coverage
    *
    * @param outputDir OutputDir for the tsv and png file
    * @param prefix Prefix of the tsv and png file
    * @param summary Summary class
    * @param libraryLevel Default false, when set true plot will be based on library stats instead of sample stats
    * @param sampleId Default it selects all sampples, when sample is giving it limits to selected sample
    */
Peter van 't Hof's avatar
Peter van 't Hof committed
489
490
  def rnaHistogramPlot(outputDir: File,
                       prefix: String,
491
                       tables: Array[Map[String, Array[Any]]],
Peter van 't Hof's avatar
Peter van 't Hof committed
492
                       libraryLevel: Boolean = false,
Peter van 't Hof's avatar
Peter van 't Hof committed
493
494
495
                       sampleId: Option[Int] = None,
                       libraryId: Option[Int] = None): Unit = {
    val statsPaths = Map(
Peter van 't Hof's avatar
Peter van 't Hof committed
496
497
      "position" -> List("histogram", "normalized_position"),
      "count" -> List("histogram", "All_Reads.normalized_coverage")
Peter van 't Hof's avatar
Peter van 't Hof committed
498
    )
Peter van 't Hof's avatar
Peter van 't Hof committed
499

500
501
502
503
504
505
506
507
    writePlotFromSummary(
      outputDir,
      prefix,
      summary,
      libraryLevel,
      sampleId,
      libraryId,
      statsPaths,
508
509
      "position" :: Nil,
      "count" :: Nil,
510
511
512
513
514
515
      "bammetrics",
      "rna",
      "Relative position",
      "Coverage",
      "Rna coverage"
    )
Peter van 't Hof's avatar
Peter van 't Hof committed
516
517
  }

Peter van 't Hof's avatar
Peter van 't Hof committed
518
  def mergeTables(tables: Array[Map[String, Array[Any]]],
519
520
                  mergeColumn: String,
                  defaultValue: Any = 0): Map[String, Array[Any]] = {
Peter van 't Hof's avatar
Peter van 't Hof committed
521
522
    val keys = tables.flatMap(x => x(mergeColumn)).distinct
    (for (table <- tables; (columnKey, columnValues) <- table if columnKey != mergeColumn) yield {
523
524
      columnKey -> keys.map(x =>
        table(mergeColumn).zip(columnValues).toMap.getOrElse(x, defaultValue))
Peter van 't Hof's avatar
Peter van 't Hof committed
525
526
527
528
    }).toMap + (mergeColumn -> keys)
  }

  def writeTableToTsv(tsvFile: File, table: Map[String, Array[Any]], firstColumn: String): Unit = {
529
    require(table.map(_._2.length).toList.distinct.size == 1,
530
            "Not all values has the same number or rows")
Peter van 't Hof's avatar
Peter van 't Hof committed
531
532
533
    val keys = table.keys.filterNot(_ == firstColumn).toList.sorted
    val writer = new PrintWriter(tsvFile)
    writer.println((firstColumn :: keys).mkString("\t"))
Peter van 't Hof's avatar
Peter van 't Hof committed
534
535
536
    table(firstColumn).zipWithIndex.foreach {
      case (c, i) =>
        writer.println((c :: keys.map(x => table(x)(i))).mkString("\t"))
Peter van 't Hof's avatar
Peter van 't Hof committed
537
538
539
    }
    writer.close()
  }
540
}
541

542
object BamMetricsAlignmentReport {
543
544
545
546
547
  def values(summary: SummaryDb,
             runId: Int,
             allSamples: Seq[Sample],
             allLibraries: Seq[Library],
             sampleId: Option[Int] = None,
548
549
550
551
             libId: Option[Int] = None,
             sampleLevel: Boolean = false,
             showPlot: Boolean = false,
             showIntro: Boolean = true,
552
             showTable: Boolean = true): Map[String, Any] = {
553
554

    val statsPaths = Map(
555
556
557
558
559
560
561
      "All" -> List("flagstats", "All"),
      "Mapped" -> List("flagstats", "Mapped"),
      "Duplicates" -> List("flagstats", "Duplicates"),
      "NotPrimaryAlignment" -> List("flagstats", "NotPrimaryAlignment")
    )
    val alignmentSummaryResults =
      summary.getStatsForLibraries(runId, "bammetrics", "bamstats", sampleId, statsPaths)
562
563
    val alignmentSummaryPlotLines: Option[Seq[String]] =
      if (showPlot)
564
        Some(BammetricsReport.alignmentSummaryPlotLines(summary, sampleId, !sampleLevel))
565
      else None
566
567
568
569
570
571
572
573
574
575
    Map(
      "alignmentSummaryResults" -> alignmentSummaryResults,
      "alignmentSummaryPlotLines" -> alignmentSummaryPlotLines,
      "sampleLevel" -> sampleLevel,
      "showPlot" -> showPlot,
      "showIntro" -> showIntro,
      "showTable" -> showTable,
      "sampleId" -> sampleId,
      "libId" -> libId
    )
576
577
  }
}
578
579
580
581
582
583
584
object BamMetricsMappingQuality {
  def values(summary: SummaryDb,
             runId: Int,
             allSamples: Seq[Sample],
             allLibraries: Seq[Library],
             sampleId: Option[Int],
             libId: Option[Int],
585
             sampleLevel: Boolean = false,
586
587
             showPlot: Boolean = false,
             showIntro: Boolean = true,
588
             showTable: Boolean = true): Map[String, Any] = {
589
590
591
592
593
594

    val samples = sampleId match {
      case Some(id) => allSamples.filter(_.id == id).toList
      case _ => allSamples.toList
    }
  }
595
}