Commit 6b5035f7 by Sander Bollen

### some formatting and numpy over math

parent a3319f09
Pipeline #2504 passed with stage
in 1 minute and 27 seconds
 ... ... @@ -7,7 +7,6 @@ vtools.gcoverage :license: MIT """ import math import cyvcf2 import numpy as np ... ... @@ -59,11 +58,13 @@ def gq_for_gvcf_record(record: cyvcf2.Variant, maxlen: int = 15000) -> List[int] return [gq]*maxlen # Credit: # https://gigabaseorgigabyte.wordpress.com/2017/06/26/averaging-basecall-quality-scores-the-right-way/ # https://git.lumc.nl/klinische-genetica/capture-lumc/vtools/issues/3 def qualmean(quals): return -10*math.log(sum([10**(q/-10) for q in quals]) / len(quals), 10) def qualmean(quals: np.ndarray) -> float: """ Credit: https://gigabaseorgigabyte.wordpress.com/2017/06/26/averaging-basecall-quality-scores-the-right-way/ https://git.lumc.nl/klinische-genetica/capture-lumc/vtools/issues/3 """ return -10*np.log10(np.mean(np.power(10, quals/-10))) class CovStats(object): ... ... @@ -73,7 +74,7 @@ class CovStats(object): self.__gq_qualities = None @property def coverages(self) -> List[int]: def coverages(self) -> np.ndarray: if self.__coverages is None: self.__coverages = np.fromiter( chain.from_iterable( ... ... @@ -84,7 +85,7 @@ class CovStats(object): return self.__coverages @property def gq_qualities(self) -> List[int]: def gq_qualities(self) -> np.ndarray: if self.__gq_qualities is None: self.__gq_qualities = np.fromiter( chain.from_iterable( ... ...
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!