Snakefile 8.13 KB
Newer Older
Sander Bollen's avatar
Sander Bollen committed
1
2
3
import json
from os.path import join
from os import mkdir
Sander Bollen's avatar
Sander Bollen committed
4
5

from pyfaidx import Fasta
Sander Bollen's avatar
Sander Bollen committed
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

OUT_DIR = config.get("OUTPUT_DIR")
REFERENCE = config.get("REFERENCE")
JAVA = config.get("JAVA")
GATK = config.get("GATK")
DBSNP = config.get("DBSNP")
ONETHOUSAND = config.get("ONETHOUSAND")
HAPMAP = config.get("HAPMAP")
QUEUE = config.get("QUEUE")
BED = config.get("BED")
REFFLAT = config.get("REFFLAT")
FEMALE_THRESHOLD = config.get("FEMALE_THRESHOLD", 0.6)

_this_dir = workflow.current_basedir

GSC = join(join(_this_dir, "src"), "gc.sc")
CGSC = join(join(_this_dir, "src"), "cg.sc")


env_dir = join(_this_dir, "envs")
main_env = join(_this_dir, "environment.yml")

settings_template = join(join(_this_dir, "templates"), "pipeline_settings.md.j2")

with open(config.get("SAMPLE_CONFIG")) as handle:
    SAMPLE_CONFIG = json.load(handle)
SAMPLES = SAMPLE_CONFIG['samples'].keys()

Sander Bollen's avatar
Sander Bollen committed
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

def split_genome(ref, approx_n_chunks=100):
    fa = Fasta(ref)
    tot_size = sum([len(x) for x in fa.records.values()])
    chunk_size = tot_size//approx_n_chunks
    chunks = []
    for chrom_name, chrom_value in fa.records.items():
        pos = 0
        while pos <= len(chrom_value):
            end = pos+chunk_size
            if end <= len(chrom_value):
                chunk = "{0}:{1}-{2}".format(chrom_name, pos, end)
            else:
                chunk = "{0}:{1}-{2}".format(chrom_name, pos, len(chrom_value))
            chunks.append(chunk)
            pos = end
    return chunks

CHUNKS = split_genome(REFERENCE)


Sander Bollen's avatar
Sander Bollen committed
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
def out_path(path):
    return join(OUT_DIR, path)


try:
    mkdir(out_path("tmp"))
except OSError:
    pass


def get_r1(wildcards):
    s = SAMPLE_CONFIG['samples'].get(wildcards.sample)
    r1 = [x['R1'] for _, x in s['libraries'].items()]
    return r1


def get_r2(wildcards):
    s = SAMPLE_CONFIG['samples'].get(wildcards.sample)
    r2 = [x['R2'] for _, x in s['libraries'].items()]
    return r2


def sample_gender(wildcards):
    sam = SAMPLE_CONFIG['samples'].get(wildcards.sample)
    return sam.get("gender", "null")


rule all:
    input:
        combined=out_path("multisample/genotyped.vcf.gz")

rule genome:
    input: REFERENCE
    output: out_path("current.genome")
    shell: "awk -v OFS='\t' {{'print $1,$2'}} {input}.fai > {output}"

rule merge_r1:
    input: get_r1
    output: temp(out_path("{sample}/pre_process/{sample}.merged_R1.fastq.gz"))
    shell: "cat {input} > {output}"

rule merge_r2:
    input: get_r2
    output: temp(out_path("{sample}/pre_process/{sample}.merged_R2.fastq.gz"))
    shell: "cat {input} > {output}"

rule sickle:
    input:
        r1 = out_path("{sample}/pre_process/{sample}.merged_R1.fastq.gz"),
        r2 = out_path("{sample}/pre_process/{sample}.merged_R2.fastq.gz")
    output:
        r1 = temp(out_path("{sample}/pre_process/{sample}.trimmed_R1.fastq")),
        r2 = temp(out_path("{sample}/pre_process/{sample}.trimmed_R2.fastq")),
        s = out_path("{sample}/pre_process/{sample}.trimmed_singles.fastq"),
    conda: "envs/sickle.yml"
    shell: "sickle pe -f {input.r1} -r {input.r2} -t sanger -o {output.r1} " \
           "-p {output.r2} -s {output.s}"

rule cutadapt:
    input:
        r1 = out_path("{sample}/pre_process/{sample}.trimmed_R1.fastq"),
        r2 = out_path("{sample}/pre_process/{sample}.trimmed_R2.fastq")
    output:
        r1 = temp(out_path("{sample}/pre_process/{sample}.cutadapt_R1.fastq")),
        r2 = temp(out_path("{sample}/pre_process/{sample}.cutadapt_R2.fastq"))
    conda: "envs/cutadapt.yml"
    shell: "cutadapt -a AGATCGGAAGAG -A AGATCGGAAGAG -m 1 -o {output.r1} " \
           "{input.r1} -p {output.r2} {input.r2}"

rule align:
    input:
        r1 = out_path("{sample}/pre_process/{sample}.cutadapt_R1.fastq"),
        r2 = out_path("{sample}/pre_process/{sample}.cutadapt_R2.fastq"),
        ref = REFERENCE
    params:
        rg = "@RG\\tID:{sample}_lib1\\tSM:{sample}\\tPL:ILLUMINA"
    output: temp(out_path("{sample}/bams/{sample}.sorted.bam"))
    conda: "envs/bwa.yml"
    shell: "bwa mem -t 8 -R '{params.rg}' {input.ref} {input.r1} {input.r2} " \
           "| picard SortSam CREATE_INDEX=TRUE TMP_DIR=null " \
           "INPUT=/dev/stdin OUTPUT={output} SORT_ORDER=coordinate"

rule markdup:
    input:
        bam = out_path("{sample}/bams/{sample}.sorted.bam"),
    params:
        tmp = out_path("tmp")
    output:
        bam = temp(out_path("{sample}/bams/{sample}.markdup.bam")),
        metrics = out_path("{sample}/bams/{sample}.markdup.metrics")
    conda: "envs/picard.yml"
    shell: "picard MarkDuplicates CREATE_INDEX=TRUE TMP_DIR={params.tmp} " \
           "INPUT={input.bam} OUTPUT={output.bam} " \
           "METRICS_FILE={output.metrics} " \
           "MAX_FILE_HANDLES_FOR_READ_ENDS_MAP=500"

rule baserecal:
    input:
        bam = out_path("{sample}/bams/{sample}.markdup.bam"),
        java = JAVA,
        gatk = GATK,
        ref = REFERENCE,
        dbsnp = DBSNP,
        one1kg = ONETHOUSAND,
        hapmap = HAPMAP
    output:
        grp = out_path("{sample}/bams/{sample}.baserecal.grp")
    conda: "envs/gatk.yml"
    shell: "{input.java} -jar {input.gatk} -T BaseRecalibrator " \
           "-I {input.bam} -o {output.grp} -nct 8 -R {input.ref} " \
           "-cov ReadGroupCovariate -cov QualityScoreCovariate " \
           "-cov CycleCovariate -cov ContextCovariate -knownSites " \
           "{input.dbsnp} -knownSites {input.one1kg} " \
           "-knownSites {input.hapmap}"

rule printreads:
    input:
        grp=out_path("{sample}/bams/{sample}.baserecal.grp"),
        bam=out_path("{sample}/bams/{sample}.markdup.bam"),
        java=JAVA,
        gatk=GATK,
        ref=REFERENCE
    output:
        bam=out_path("{sample}/bams/{sample}.baserecal.bam"),
        bai=out_path("{sample}/bams/{sample}.baserecal.bai")
    conda: "envs/gatk.yml"
    shell: "{input.java} -jar {input.gatk} -T PrintReads -I {input.bam} "\
           "-o {output.bam} -R {input.ref} -BQSR {input.grp}"


Sander Bollen's avatar
Sander Bollen committed
185
186
187
188
189
190
191
192
193
194
# rule qdir:
#     params:
#         qdir=out_path("{sample}/.qdir")
#     output:
#         aux=out_path("{sample}/.qdir/.aux")
#     shell: "touch {output.aux}"


rule gvcf_scatter:
    input:
Sander Bollen's avatar
Sander Bollen committed
195
        bam=out_path("{sample}/bams/{sample}.baserecal.bam"),
Sander Bollen's avatar
Sander Bollen committed
196
197
198
        dbnsp=DBSNP,
        ref=REFERENCE,
        gatk=GATK
Sander Bollen's avatar
Sander Bollen committed
199
    params:
Sander Bollen's avatar
Sander Bollen committed
200
        chunk="{chunk}"
Sander Bollen's avatar
Sander Bollen committed
201
    output:
Sander Bollen's avatar
Sander Bollen committed
202
203
204
205
206
        gvcf=out_path("{sample}/vcf/{sample}.{chunk}.part.vcf.gz")
    conda: "envs/gatk.yaml"
    shell: "java -jar {input.gatk} -T HaplotypeCaller -ERC GVCF -I "\
           "{input.bam} -R {input.ref} -D {input.dbsnp} "\
           "-L {params.chunk} -o {input.gvcf}"
Sander Bollen's avatar
Sander Bollen committed
207
208


Sander Bollen's avatar
Sander Bollen committed
209
rule gvcf_gather:
Sander Bollen's avatar
Sander Bollen committed
210
    input:
Sander Bollen's avatar
Sander Bollen committed
211
        gvcfs=expand(out_path("{{sample}}/vcf/{{sample}}.{chunk}.part.vcf.gz"), chunk=CHUNKS),
Sander Bollen's avatar
Sander Bollen committed
212
        ref=REFERENCE,
Sander Bollen's avatar
Sander Bollen committed
213
        gatk=GATK
Sander Bollen's avatar
Sander Bollen committed
214
    params:
Sander Bollen's avatar
Sander Bollen committed
215
        gvcfs=" -V ".join(expand(out_path("{{sample}}/vcf/{{sample}}.{chunk}.part.vcf.gz"), chunk=CHUNKS))
Sander Bollen's avatar
Sander Bollen committed
216
217
    output:
        gvcf=out_path("{sample}/vcf/{sample}.g.vcf.gz")
Sander Bollen's avatar
Sander Bollen committed
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
    conda: "envs/gatk.yaml"
    shell: "java -cp {input.gatk} org.broadinstitute.gatk.tools.CatVariants "\
           "-R {input.ref} -V {params.gvcfs} -output {output.gvcf} -assumeSorted"


# rule gvcf:
#     input:
#         bam=out_path("{sample}/bams/{sample}.baserecal.bam"),
#         queue=QUEUE,
#         dbsnp=DBSNP,
#         ref=REFERENCE,
#         gc=GSC,
#         qaux=out_path("{sample}/.qdir/.aux")
#     params:
#         qdir=out_path("{sample}/.qdir")
#     output:
#         gvcf=out_path("{sample}/vcf/{sample}.g.vcf.gz")
#     conda: "envs/gatk.yml"
#     shell: "java -jar {input.queue} -S {input.gc} -I {input.bam} "\
#            "-D {input.dbsnp} -R {input.ref} -o {output.gvcf} "\
#            "-jobResReq 'h_vmem=10G' -run -qsub -jobParaEnv BWA "\
#            "-runDir {params.qdir}"
Sander Bollen's avatar
Sander Bollen committed
240
241
242
243
244
245
246
247
248
249
250
251
252

rule genotype:
    input:
        gvcfs=expand(out_path("{sample}/vcf/{sample}.g.vcf.gz"), sample=SAMPLES),
        queue=QUEUE,
        ref=REFERENCE,
        cg=CGSC
    params:
        li=" -I ".join(expand(out_path("{sample}/vcf/{sample}.g.vcf.gz"), sample=SAMPLES))
    output:
        combined=out_path("multisample/genotyped.vcf.gz")
    conda: "envs/gatk.yml"
    shell: "java -jar {input.queue} -S {input.cg} -I {params.li} "\
Sander Bollen's avatar
Sander Bollen committed
253
           "-R {input.ref} -o {output.combined} "\
Sander Bollen's avatar
Sander Bollen committed
254
255
256
           "-jobResReq 'h_vmem=10G' -run -qsub -jobParaEnv BWA"