vis.py 14.5 KB
Newer Older
jhoogenboom's avatar
jhoogenboom committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#!/usr/bin/env python
"""
Create a data visualisation web page or Vega graph specification.

With no optional arguments specified, a self-contained web page (HTML
file) is produced.  You can open this file in a web browser to view
interactive visualisations of your data.  The web page contains a file
selection element which can be used to select the data to be visualised.

Visualisations make use of the Vega JavaScript library
(https://vega.github.io).  The required JavaScript libraries (Vega and
D3) are embedded in the generated HTML file.  With the -O/--online
option specified, the HTML file will instead link to the latest version
of these libraries on the Internet.

16 17 18 19 20
Vega supports generating visualisations on the command line.  By
default, FDSTools produces a full-featured HTML file.  Specify the
-V/--vega option if you wish to obtain a bare Vega graph specification
(a JSON file) instead.  You can pass this file through Vega to generate
a PNG or SVG image file.
jhoogenboom's avatar
jhoogenboom committed
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

If an input file is specified, the visualisation will be set up
specifically to visualise the contents of this file.  To this end, the
entire file contents are embedded in the generated visualisation.
"""
import argparse
import sys
import json
import re
import os
import cgi

from pkg_resources import resource_stream, resource_string

from ..lib import pos_int_arg

__version__ = "0.1dev"


# Default values for parameters are specified below.

# Default minimum number of reads to require.
# This value can be overridden by the -n command line option.
_DEF_THRESHOLD_ABS = 15

# Default minimum amount of reads to require, as a percentage of the
# highest allele of each marker.
# This value can be overridden by the -m command line option.
_DEF_THRESHOLD_PCT = 0.5

51 52 53 54
# Default minimum number of reads per orientation to require.
# This value can be overridden by the -s command line option.
_DEF_THRESHOLD_ORIENTATION = 0

55 56 57
# Default percentage of reads on one strand to mark as bias.
# This value can be overridden by the -B command line option.
_DEF_THRESHOLD_BIAS = 25.0
58

jhoogenboom's avatar
jhoogenboom committed
59 60 61 62 63 64 65 66
# Default width of bars in bar graphs, in pixels.
# This value can be overridden by the -b command line option.
_DEF_BAR_WIDTH = 15

# Default amount of padding between subgraphs, in pixels.
# This value can be overridden by the -p command line option.
_DEF_SUBGRAPH_PADDING = 70

67 68 69 70
# Default graph width in pixels.
# This value can be overridden by the -w command line option.
_DEF_WIDTH = 600

jhoogenboom's avatar
jhoogenboom committed
71 72 73 74
# Default graph height in pixels.
# This value can be overridden by the -H command line option.
_DEF_HEIGHT = 400

75 76 77 78
# Default marker name matching regular expression.
# This value can be overridden by the -M command line option.
_DEF_MARKER_REGEX = ".*"

jhoogenboom's avatar
jhoogenboom committed
79 80 81 82
# Default repeat unit matching regular expression.
# This value can be overridden by the -U command line option.
_DEF_UNIT_REGEX = ".*"

jhoogenboom's avatar
jhoogenboom committed
83 84 85 86 87 88 89
# Default data file that Vega will read when -V/--vega is specified
# without providing data to embed in the file.
# It is currently impossible to override this value.
_DEF_DATA_FILENAME = "data.csv"



90 91
_PAT_TITLE = re.compile("<title>\s*(.*?)\s*"
                        "</title>", flags=re.DOTALL|re.IGNORECASE)
jhoogenboom's avatar
jhoogenboom committed
92 93
_PAT_LIBRARIES = re.compile("<!--\s*BEGIN_LIBRARIES\s*-->\s*(.*?)\s*"
                            "<!--\s*END_LIBRARIES\s*-->", flags=re.DOTALL)
94 95
_PAT_LOAD_SCRIPT = re.compile("<!--\s*BEGIN_LOAD_SCRIPT\s*-->\s*(.*?)\s*"
                              "<!--\s*END_LOAD_SCRIPT\s*-->", flags=re.DOTALL)
jhoogenboom's avatar
jhoogenboom committed
96 97 98 99 100 101 102 103

_SCRIPT_BEGIN = '<script type="text/javascript">'
_SCRIPT_END = '</script>'

_EXTERNAL_LIBRARIES = ("vis/d3.min.js", "vis/vega.min.js")



104 105 106 107 108 109 110
def set_signal_value(spec, signalname, value):
    if "signals" not in spec:
        return False
    for signal in spec["signals"]:
        if signal["name"] == signalname:
            signal["init"] = value
            return True
jhoogenboom's avatar
jhoogenboom committed
111
    return False
112
#set_signal_value
jhoogenboom's avatar
jhoogenboom committed
113 114


jhoogenboom's avatar
jhoogenboom committed
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
def set_axis_scale(spec, scalename, value):
    success = False
    for marks in spec["marks"]:
        if "scales" not in marks:
            continue
        for scale in marks["scales"]:
            if scale["name"] != scalename:
                continue
            scale["type"] = value;
            success = True
    return success
#set_axis_scale


def create_visualisation(vistype, infile, outfile, vega, online, tidy, min_abs,
130 131 132
                         min_pct, min_per_strand, bias_threshold, bar_width,
                         padding, marker, width, height, log_scale,
                         repeat_unit, no_alldata, title):
jhoogenboom's avatar
jhoogenboom committed
133 134 135 136 137 138 139 140 141 142 143
    # Get graph spec.
    spec = json.load(resource_stream(
        "fdstools", "vis/%svis/%svis.json" % (vistype, vistype)))
    if infile is not None:
        # Embed the given data file.
        spec["data"][0]["values"] = infile.read()
    elif vega:
        # Vega should load data from somewhere in headless mode.
        del spec["data"][0]["values"]
        spec["data"][0]["url"] = _DEF_DATA_FILENAME

jhoogenboom's avatar
jhoogenboom committed
144
    # Apply width, height, and padding settings.
145
    spec["width"] = width
jhoogenboom's avatar
jhoogenboom committed
146
    if vistype == "stuttermodel":
147
        set_signal_value(spec, "graphheight", height)
148 149
    elif vistype == "allele":
        spec["height"] = height
jhoogenboom's avatar
jhoogenboom committed
150
    else:
151
        set_signal_value(spec, "barwidth", bar_width)
152 153 154
    if vistype != "allele":
        set_signal_value(spec, "subgraphoffset", padding)
        set_signal_value(spec, "filter_marker", marker)
jhoogenboom's avatar
jhoogenboom committed
155 156 157

    # Apply type-specific settings.
    if vistype == "stuttermodel":
158 159
        set_signal_value(spec, "filter_unit", repeat_unit)
        set_signal_value(spec, "show_all_data", False if no_alldata else True)
jhoogenboom's avatar
jhoogenboom committed
160
    elif vistype == "sample" or vistype == "bgraw":
161 162
        set_signal_value(spec, "amplitude_threshold", min_abs)
        set_signal_value(spec, "amplitude_pct_threshold", min_pct)
163
    elif vistype == "profile":
164 165
        set_signal_value(spec, "filter_threshold", min_pct)
        set_signal_value(spec, "low", 0.001 if log_scale else 0)
166
    if vistype == "sample":
167 168
        set_signal_value(spec, "orientation_threshold", min_per_strand)
        set_signal_value(spec, "bias_threshold", bias_threshold)
jhoogenboom's avatar
jhoogenboom committed
169 170

    # Apply axis scale settings.
171
    if vistype != "stuttermodel" and vistype != "allele":
jhoogenboom's avatar
jhoogenboom committed
172 173 174 175 176 177
        if not log_scale:
            set_axis_scale(spec, "x", "linear")
        elif vistype == "sample":
            set_axis_scale(spec, "x", "sqrt")
        else:
            set_axis_scale(spec, "x", "log")
jhoogenboom's avatar
jhoogenboom committed
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215

    # Stringify spec.
    if tidy:
        spec = json.dumps(spec, indent=2, separators=(",", ": "))
    else:
        spec = json.dumps(spec, separators=(",", ":"))

    if vega:
        # Vega graph spec is all that we were asked for.
        outfile.write(spec)
        return

    # Creating a fully self-contained HTML visualisation instead.
    html = resource_string("fdstools", "vis/%svis/index.html" % vistype)
    match = _PAT_LOAD_SCRIPT.search(html)
    if match:
        html = "".join([html[:match.start(1)],
                        _SCRIPT_BEGIN,
                        "var graph_spec=",
                        spec,
                        ";onLoadSpec(",
                        "true" if infile is not None else "false",
                        ");",
                        _SCRIPT_END,
                        html[match.end(1):]])

    if not online:
        # Replace external libraries with inline libraries.
        match = _PAT_LIBRARIES.search(html)
        if match:
            parts = [html[:match.start(1)]]
            for library in _EXTERNAL_LIBRARIES:
                parts += [_SCRIPT_BEGIN,
                          resource_string("fdstools", library),
                          _SCRIPT_END]
            parts.append(html[match.end(1):])
            html = "".join(parts)

216 217 218 219 220 221 222 223 224 225 226
    if title is None and infile is not None and infile != sys.stdin:
        try:
            title = os.path.splitext(os.path.basename(infile.name))[0]
        except AttributeError:
            pass
    if title:
        match = _PAT_TITLE.search(html)
        if match:
            html = "".join([
                html[:match.start(1)], title, " - ", html[match.start(1):]])

227
    outfile.write(html)
jhoogenboom's avatar
jhoogenboom committed
228 229 230 231
#create_visualisation


def add_arguments(parser):
jhoogenboom's avatar
jhoogenboom committed
232
    parser.add_argument('type', metavar="TYPE",
233
        choices=("sample", "profile", "bgraw", "stuttermodel", "allele"),
234
        help="the type of data to visualise; use 'sample' to visualise "
jhoogenboom's avatar
jhoogenboom committed
235 236 237 238 239
             "sample data files and bgcorrect output; use 'profile' to "
             "visualise background noise profiles obtained with bgestimate, "
             "bghomstats, and bgpredict; use 'bgraw' to visualise raw "
             "background noise data obtained with bghomraw; use "
             "'stuttermodel' to visualise models of stutter obtained from "
240 241
             "stuttermodel; use 'allele' to visualise the allele list "
             "obtained from allelefinder")
jhoogenboom's avatar
jhoogenboom committed
242 243 244 245 246 247 248 249 250 251
    parser.add_argument('infile', metavar="IN", nargs="?",
        help="file containing the data to embed in the visualisation file; if "
             "not specified, HTML visualisation files will contain a file "
             "selection control, and Vega visualisation files will load data "
             "from a file called '%s'" % _DEF_DATA_FILENAME)
    parser.add_argument('outfile', metavar="OUT", nargs="?",
        type=argparse.FileType('w'),
        default=sys.stdout,
        help="file to write output to (default: write to stdout)")
    parser.add_argument('-V', '--vega', action="store_true",
252 253 254
        help="by default, a full-featured HTML file offering an interactive "
             "visualisation is created; if this option is specified, only a "
             "bare Vega graph specification (JSON file) is produced instead")
jhoogenboom's avatar
jhoogenboom committed
255 256 257 258 259 260 261 262
    parser.add_argument('-O', '--online', action="store_true",
        help="when generating an HTML visualisation file, required JavaScript "
             "libraries (D3 and Vega) are embedded in the file; if this "
             "option is specified, the HTML file will instead link to these "
             "libraries on the Internet, thereby always using the latest "
             "versions of D3 and Vega")
    parser.add_argument('-t', '--tidy', action="store_true",
        help="tidily indent the generated JSON")
263 264 265
    parser.add_argument('-T', '--title',
        help="prepend the given value to the title of HTML visualisations "
             "(default: prepend name of data file if given)")
jhoogenboom's avatar
jhoogenboom committed
266

267 268 269 270
    visgroup = parser.add_argument_group("visualisation options",
        description="words in [brackets] indicate applicable visualisation "
                    "types")
    visgroup.add_argument('-n', '--min-abs', metavar="N", type=pos_int_arg,
jhoogenboom's avatar
jhoogenboom committed
271
        default=_DEF_THRESHOLD_ABS,
jhoogenboom's avatar
jhoogenboom committed
272 273
        help="[sample, bgraw] only show sequences with this minimum number of "
             "reads (default: %(default)s)")
274
    visgroup.add_argument('-m', '--min-pct', metavar="PCT", type=float,
jhoogenboom's avatar
jhoogenboom committed
275
        default=_DEF_THRESHOLD_PCT,
jhoogenboom's avatar
jhoogenboom committed
276 277 278 279
        help="[sample, profile, bgraw] for sample: only show sequences with "
             "at least this percentage of the number of reads of the highest "
             "allele of a marker; for profile and bgraw: at least this "
             "percentage of the true allele (default: %(default)s)")
280 281 282 283
    visgroup.add_argument('-s', '--min-per-strand', metavar="N",
        type=pos_int_arg, default=_DEF_THRESHOLD_ORIENTATION,
        help="[sample] only show sequences with this minimum number of reads "
             "for both orientations (forward/reverse) (default: %(default)s)")
284 285 286 287
    visgroup.add_argument('-B', '--bias-threshold', metavar="N", type=float,
        default=_DEF_THRESHOLD_BIAS,
        help="[sample] mark sequences that have less than this percentage of "
             "reads on one strand (default: %(default)s)")
288 289
    visgroup.add_argument('-M', '--marker', metavar="REGEX",
        default=_DEF_MARKER_REGEX,
jhoogenboom's avatar
jhoogenboom committed
290 291 292 293 294 295 296 297
        help="[sample, profile, bgraw, stuttermodel] only show graphs for the "
             "markers that match the given regular expression; the default "
             "value '%(default)s' matches any marker name")
    visgroup.add_argument('-U', '--repeat-unit', metavar="REGEX",
        default=_DEF_UNIT_REGEX,
        help="[stuttermodel] only show graphs for the repeat units that match "
             "the given regular expression; the default value '%(default)s' "
             "matches any repeat unit sequence")
jhoogenboom's avatar
jhoogenboom committed
298 299 300
    visgroup.add_argument('-L', '--log-scale', action="store_true",
        help="[sample, profile, bgraw] use logarithmic scale (for sample: "
             "square root scale) instead of linear scale")
301
    visgroup.add_argument('-b', '--bar-width', metavar="N", type=pos_int_arg,
jhoogenboom's avatar
jhoogenboom committed
302
        default=_DEF_BAR_WIDTH,
jhoogenboom's avatar
jhoogenboom committed
303
        help="[sample, profile, bgraw] width of the bars in pixels (default: "
304 305
             "%(default)s)")
    visgroup.add_argument('-p', '--padding', metavar="N", type=pos_int_arg,
jhoogenboom's avatar
jhoogenboom committed
306
        default=_DEF_SUBGRAPH_PADDING,
jhoogenboom's avatar
jhoogenboom committed
307 308 309
        help="[sample, profile, bgraw, stuttermodel] amount of padding (in "
             "pixels) between graphs of different markers/alleles (default: "
             "%(default)s)")
310 311
    visgroup.add_argument('-w', '--width', metavar="N", type=pos_int_arg,
        default=_DEF_WIDTH,
312 313
        help="[sample, profile, bgraw, stuttermodel, allele] width of the "
             "graph area in pixels (default: %(default)s)")
jhoogenboom's avatar
jhoogenboom committed
314 315
    visgroup.add_argument('-H', '--height', metavar="N", type=pos_int_arg,
        default=_DEF_HEIGHT,
316 317
        help="[stuttermodel, allele] height of the graph area in pixels "
             "(default: %(default)s)")
jhoogenboom's avatar
jhoogenboom committed
318 319
    visgroup.add_argument('-A', '--no-alldata', action="store_true",
        help="[stuttermodel] if specified, show only marker-specific fits")
jhoogenboom's avatar
jhoogenboom committed
320 321 322 323
#add_arguments


def run(args):
324 325
    if args.infile == "-":
        args.infile = None if sys.stdin.isatty() else sys.stdin
jhoogenboom's avatar
jhoogenboom committed
326 327 328 329 330 331
    if (args.infile is not None and args.outfile == sys.stdout
            and not os.path.exists(args.infile)):
        # One filename given, and it does not exist.  Assume outfile.
        args.outfile = open(args.infile, 'w')
        args.infile = None

332 333 334 335 336
    if args.outfile.isatty():
        raise ValueError("Please specify a file name to write the %s to." %
                         ("Vega graph specification (JSON format)" if args.vega
                          else "HTML document"))

jhoogenboom's avatar
jhoogenboom committed
337 338 339 340 341 342
    if args.infile is not None and args.infile != sys.stdin:
        # Open the specified input file.
        args.infile = open(args.infile, 'r')

    create_visualisation(args.type, args.infile, args.outfile, args.vega,
                         args.online, args.tidy, args.min_abs, args.min_pct,
343 344 345 346
                         args.min_per_strand, args.bias_threshold,
                         args.bar_width, args.padding, args.marker, args.width,
                         args.height, args.log_scale, args.repeat_unit,
                         args.no_alldata, args.title)
jhoogenboom's avatar
jhoogenboom committed
347
#run