vis.py 14.5 KB
Newer Older
jhoogenboom's avatar
jhoogenboom committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
#!/usr/bin/env python
"""
Create a data visualisation web page or Vega graph specification.

With no optional arguments specified, a self-contained web page (HTML
file) is produced.  You can open this file in a web browser to view
interactive visualisations of your data.  The web page contains a file
selection element which can be used to select the data to be visualised.

Visualisations make use of the Vega JavaScript library
(https://vega.github.io).  The required JavaScript libraries (Vega and
D3) are embedded in the generated HTML file.  With the -O/--online
option specified, the HTML file will instead link to the latest version
of these libraries on the Internet.

16
17
18
19
20
Vega supports generating visualisations on the command line.  By
default, FDSTools produces a full-featured HTML file.  Specify the
-V/--vega option if you wish to obtain a bare Vega graph specification
(a JSON file) instead.  You can pass this file through Vega to generate
a PNG or SVG image file.
jhoogenboom's avatar
jhoogenboom committed
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

If an input file is specified, the visualisation will be set up
specifically to visualise the contents of this file.  To this end, the
entire file contents are embedded in the generated visualisation.
"""
import argparse
import sys
import json
import re
import os
import cgi

from pkg_resources import resource_stream, resource_string

from ..lib import pos_int_arg

__version__ = "0.1dev"


# Default values for parameters are specified below.

# Default minimum number of reads to require.
# This value can be overridden by the -n command line option.
_DEF_THRESHOLD_ABS = 15

# Default minimum amount of reads to require, as a percentage of the
# highest allele of each marker.
# This value can be overridden by the -m command line option.
_DEF_THRESHOLD_PCT = 0.5

51
52
53
54
# Default minimum number of reads per orientation to require.
# This value can be overridden by the -s command line option.
_DEF_THRESHOLD_ORIENTATION = 0

55
56
57
# Default percentage of reads on one strand to mark as bias.
# This value can be overridden by the -B command line option.
_DEF_THRESHOLD_BIAS = 25.0
58

jhoogenboom's avatar
jhoogenboom committed
59
60
61
62
63
64
65
66
# Default width of bars in bar graphs, in pixels.
# This value can be overridden by the -b command line option.
_DEF_BAR_WIDTH = 15

# Default amount of padding between subgraphs, in pixels.
# This value can be overridden by the -p command line option.
_DEF_SUBGRAPH_PADDING = 70

67
68
69
70
# Default graph width in pixels.
# This value can be overridden by the -w command line option.
_DEF_WIDTH = 600

jhoogenboom's avatar
jhoogenboom committed
71
72
73
74
# Default graph height in pixels.
# This value can be overridden by the -H command line option.
_DEF_HEIGHT = 400

75
76
77
78
# Default marker name matching regular expression.
# This value can be overridden by the -M command line option.
_DEF_MARKER_REGEX = ".*"

jhoogenboom's avatar
jhoogenboom committed
79
80
81
82
# Default repeat unit matching regular expression.
# This value can be overridden by the -U command line option.
_DEF_UNIT_REGEX = ".*"

jhoogenboom's avatar
jhoogenboom committed
83
84
85
86
87
88
89
# Default data file that Vega will read when -V/--vega is specified
# without providing data to embed in the file.
# It is currently impossible to override this value.
_DEF_DATA_FILENAME = "data.csv"



90
91
_PAT_TITLE = re.compile("<title>\s*(.*?)\s*"
                        "</title>", flags=re.DOTALL|re.IGNORECASE)
jhoogenboom's avatar
jhoogenboom committed
92
93
_PAT_LIBRARIES = re.compile("<!--\s*BEGIN_LIBRARIES\s*-->\s*(.*?)\s*"
                            "<!--\s*END_LIBRARIES\s*-->", flags=re.DOTALL)
94
95
_PAT_LOAD_SCRIPT = re.compile("<!--\s*BEGIN_LOAD_SCRIPT\s*-->\s*(.*?)\s*"
                              "<!--\s*END_LOAD_SCRIPT\s*-->", flags=re.DOTALL)
jhoogenboom's avatar
jhoogenboom committed
96
97
98
99
100
101
102
103

_SCRIPT_BEGIN = '<script type="text/javascript">'
_SCRIPT_END = '</script>'

_EXTERNAL_LIBRARIES = ("vis/d3.min.js", "vis/vega.min.js")



104
105
106
107
108
109
110
def set_signal_value(spec, signalname, value):
    if "signals" not in spec:
        return False
    for signal in spec["signals"]:
        if signal["name"] == signalname:
            signal["init"] = value
            return True
jhoogenboom's avatar
jhoogenboom committed
111
    return False
112
#set_signal_value
jhoogenboom's avatar
jhoogenboom committed
113
114


jhoogenboom's avatar
jhoogenboom committed
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
def set_axis_scale(spec, scalename, value):
    success = False
    for marks in spec["marks"]:
        if "scales" not in marks:
            continue
        for scale in marks["scales"]:
            if scale["name"] != scalename:
                continue
            scale["type"] = value;
            success = True
    return success
#set_axis_scale


def create_visualisation(vistype, infile, outfile, vega, online, tidy, min_abs,
130
131
132
                         min_pct, min_per_strand, bias_threshold, bar_width,
                         padding, marker, width, height, log_scale,
                         repeat_unit, no_alldata, title):
jhoogenboom's avatar
jhoogenboom committed
133
134
135
136
137
138
139
140
141
142
143
    # Get graph spec.
    spec = json.load(resource_stream(
        "fdstools", "vis/%svis/%svis.json" % (vistype, vistype)))
    if infile is not None:
        # Embed the given data file.
        spec["data"][0]["values"] = infile.read()
    elif vega:
        # Vega should load data from somewhere in headless mode.
        del spec["data"][0]["values"]
        spec["data"][0]["url"] = _DEF_DATA_FILENAME

jhoogenboom's avatar
jhoogenboom committed
144
    # Apply width, height, and padding settings.
145
    spec["width"] = width
jhoogenboom's avatar
jhoogenboom committed
146
    if vistype == "stuttermodel":
147
        set_signal_value(spec, "graphheight", height)
148
149
    elif vistype == "allele":
        spec["height"] = height
jhoogenboom's avatar
jhoogenboom committed
150
    else:
151
        set_signal_value(spec, "barwidth", bar_width)
152
153
154
    if vistype != "allele":
        set_signal_value(spec, "subgraphoffset", padding)
        set_signal_value(spec, "filter_marker", marker)
jhoogenboom's avatar
jhoogenboom committed
155
156
157

    # Apply type-specific settings.
    if vistype == "stuttermodel":
158
159
        set_signal_value(spec, "filter_unit", repeat_unit)
        set_signal_value(spec, "show_all_data", False if no_alldata else True)
jhoogenboom's avatar
jhoogenboom committed
160
    elif vistype == "sample" or vistype == "bgraw":
161
162
        set_signal_value(spec, "amplitude_threshold", min_abs)
        set_signal_value(spec, "amplitude_pct_threshold", min_pct)
163
    elif vistype == "profile":
164
165
        set_signal_value(spec, "filter_threshold", min_pct)
        set_signal_value(spec, "low", 0.001 if log_scale else 0)
166
    if vistype == "sample":
167
168
        set_signal_value(spec, "orientation_threshold", min_per_strand)
        set_signal_value(spec, "bias_threshold", bias_threshold)
jhoogenboom's avatar
jhoogenboom committed
169
170

    # Apply axis scale settings.
171
    if vistype != "stuttermodel" and vistype != "allele":
jhoogenboom's avatar
jhoogenboom committed
172
173
174
175
176
177
        if not log_scale:
            set_axis_scale(spec, "x", "linear")
        elif vistype == "sample":
            set_axis_scale(spec, "x", "sqrt")
        else:
            set_axis_scale(spec, "x", "log")
jhoogenboom's avatar
jhoogenboom committed
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

    # Stringify spec.
    if tidy:
        spec = json.dumps(spec, indent=2, separators=(",", ": "))
    else:
        spec = json.dumps(spec, separators=(",", ":"))

    if vega:
        # Vega graph spec is all that we were asked for.
        outfile.write(spec)
        return

    # Creating a fully self-contained HTML visualisation instead.
    html = resource_string("fdstools", "vis/%svis/index.html" % vistype)
    match = _PAT_LOAD_SCRIPT.search(html)
    if match:
        html = "".join([html[:match.start(1)],
                        _SCRIPT_BEGIN,
                        "var graph_spec=",
                        spec,
                        ";onLoadSpec(",
                        "true" if infile is not None else "false",
                        ");",
                        _SCRIPT_END,
                        html[match.end(1):]])

    if not online:
        # Replace external libraries with inline libraries.
        match = _PAT_LIBRARIES.search(html)
        if match:
            parts = [html[:match.start(1)]]
            for library in _EXTERNAL_LIBRARIES:
                parts += [_SCRIPT_BEGIN,
                          resource_string("fdstools", library),
                          _SCRIPT_END]
            parts.append(html[match.end(1):])
            html = "".join(parts)

216
217
218
219
220
221
222
223
224
225
226
    if title is None and infile is not None and infile != sys.stdin:
        try:
            title = os.path.splitext(os.path.basename(infile.name))[0]
        except AttributeError:
            pass
    if title:
        match = _PAT_TITLE.search(html)
        if match:
            html = "".join([
                html[:match.start(1)], title, " - ", html[match.start(1):]])

227
    outfile.write(html)
jhoogenboom's avatar
jhoogenboom committed
228
229
230
231
#create_visualisation


def add_arguments(parser):
jhoogenboom's avatar
jhoogenboom committed
232
    parser.add_argument('type', metavar="TYPE",
233
        choices=("sample", "profile", "bgraw", "stuttermodel", "allele"),
234
        help="the type of data to visualise; use 'sample' to visualise "
jhoogenboom's avatar
jhoogenboom committed
235
236
237
238
239
             "sample data files and bgcorrect output; use 'profile' to "
             "visualise background noise profiles obtained with bgestimate, "
             "bghomstats, and bgpredict; use 'bgraw' to visualise raw "
             "background noise data obtained with bghomraw; use "
             "'stuttermodel' to visualise models of stutter obtained from "
240
241
             "stuttermodel; use 'allele' to visualise the allele list "
             "obtained from allelefinder")
jhoogenboom's avatar
jhoogenboom committed
242
243
244
245
246
247
248
249
250
251
    parser.add_argument('infile', metavar="IN", nargs="?",
        help="file containing the data to embed in the visualisation file; if "
             "not specified, HTML visualisation files will contain a file "
             "selection control, and Vega visualisation files will load data "
             "from a file called '%s'" % _DEF_DATA_FILENAME)
    parser.add_argument('outfile', metavar="OUT", nargs="?",
        type=argparse.FileType('w'),
        default=sys.stdout,
        help="file to write output to (default: write to stdout)")
    parser.add_argument('-V', '--vega', action="store_true",
252
253
254
        help="by default, a full-featured HTML file offering an interactive "
             "visualisation is created; if this option is specified, only a "
             "bare Vega graph specification (JSON file) is produced instead")
jhoogenboom's avatar
jhoogenboom committed
255
256
257
258
259
260
261
262
    parser.add_argument('-O', '--online', action="store_true",
        help="when generating an HTML visualisation file, required JavaScript "
             "libraries (D3 and Vega) are embedded in the file; if this "
             "option is specified, the HTML file will instead link to these "
             "libraries on the Internet, thereby always using the latest "
             "versions of D3 and Vega")
    parser.add_argument('-t', '--tidy', action="store_true",
        help="tidily indent the generated JSON")
263
264
265
    parser.add_argument('-T', '--title',
        help="prepend the given value to the title of HTML visualisations "
             "(default: prepend name of data file if given)")
jhoogenboom's avatar
jhoogenboom committed
266

267
268
269
270
    visgroup = parser.add_argument_group("visualisation options",
        description="words in [brackets] indicate applicable visualisation "
                    "types")
    visgroup.add_argument('-n', '--min-abs', metavar="N", type=pos_int_arg,
jhoogenboom's avatar
jhoogenboom committed
271
        default=_DEF_THRESHOLD_ABS,
jhoogenboom's avatar
jhoogenboom committed
272
273
        help="[sample, bgraw] only show sequences with this minimum number of "
             "reads (default: %(default)s)")
274
    visgroup.add_argument('-m', '--min-pct', metavar="PCT", type=float,
jhoogenboom's avatar
jhoogenboom committed
275
        default=_DEF_THRESHOLD_PCT,
jhoogenboom's avatar
jhoogenboom committed
276
277
278
279
        help="[sample, profile, bgraw] for sample: only show sequences with "
             "at least this percentage of the number of reads of the highest "
             "allele of a marker; for profile and bgraw: at least this "
             "percentage of the true allele (default: %(default)s)")
280
281
282
283
    visgroup.add_argument('-s', '--min-per-strand', metavar="N",
        type=pos_int_arg, default=_DEF_THRESHOLD_ORIENTATION,
        help="[sample] only show sequences with this minimum number of reads "
             "for both orientations (forward/reverse) (default: %(default)s)")
284
285
286
287
    visgroup.add_argument('-B', '--bias-threshold', metavar="N", type=float,
        default=_DEF_THRESHOLD_BIAS,
        help="[sample] mark sequences that have less than this percentage of "
             "reads on one strand (default: %(default)s)")
288
289
    visgroup.add_argument('-M', '--marker', metavar="REGEX",
        default=_DEF_MARKER_REGEX,
jhoogenboom's avatar
jhoogenboom committed
290
291
292
293
294
295
296
297
        help="[sample, profile, bgraw, stuttermodel] only show graphs for the "
             "markers that match the given regular expression; the default "
             "value '%(default)s' matches any marker name")
    visgroup.add_argument('-U', '--repeat-unit', metavar="REGEX",
        default=_DEF_UNIT_REGEX,
        help="[stuttermodel] only show graphs for the repeat units that match "
             "the given regular expression; the default value '%(default)s' "
             "matches any repeat unit sequence")
jhoogenboom's avatar
jhoogenboom committed
298
299
300
    visgroup.add_argument('-L', '--log-scale', action="store_true",
        help="[sample, profile, bgraw] use logarithmic scale (for sample: "
             "square root scale) instead of linear scale")
301
    visgroup.add_argument('-b', '--bar-width', metavar="N", type=pos_int_arg,
jhoogenboom's avatar
jhoogenboom committed
302
        default=_DEF_BAR_WIDTH,
jhoogenboom's avatar
jhoogenboom committed
303
        help="[sample, profile, bgraw] width of the bars in pixels (default: "
304
305
             "%(default)s)")
    visgroup.add_argument('-p', '--padding', metavar="N", type=pos_int_arg,
jhoogenboom's avatar
jhoogenboom committed
306
        default=_DEF_SUBGRAPH_PADDING,
jhoogenboom's avatar
jhoogenboom committed
307
308
309
        help="[sample, profile, bgraw, stuttermodel] amount of padding (in "
             "pixels) between graphs of different markers/alleles (default: "
             "%(default)s)")
310
311
    visgroup.add_argument('-w', '--width', metavar="N", type=pos_int_arg,
        default=_DEF_WIDTH,
312
313
        help="[sample, profile, bgraw, stuttermodel, allele] width of the "
             "graph area in pixels (default: %(default)s)")
jhoogenboom's avatar
jhoogenboom committed
314
315
    visgroup.add_argument('-H', '--height', metavar="N", type=pos_int_arg,
        default=_DEF_HEIGHT,
316
317
        help="[stuttermodel, allele] height of the graph area in pixels "
             "(default: %(default)s)")
jhoogenboom's avatar
jhoogenboom committed
318
319
    visgroup.add_argument('-A', '--no-alldata', action="store_true",
        help="[stuttermodel] if specified, show only marker-specific fits")
jhoogenboom's avatar
jhoogenboom committed
320
321
322
323
#add_arguments


def run(args):
324
325
    if args.infile == "-":
        args.infile = None if sys.stdin.isatty() else sys.stdin
jhoogenboom's avatar
jhoogenboom committed
326
327
328
329
330
331
    if (args.infile is not None and args.outfile == sys.stdout
            and not os.path.exists(args.infile)):
        # One filename given, and it does not exist.  Assume outfile.
        args.outfile = open(args.infile, 'w')
        args.infile = None

332
333
334
335
336
    if args.outfile.isatty():
        raise ValueError("Please specify a file name to write the %s to." %
                         ("Vega graph specification (JSON format)" if args.vega
                          else "HTML document"))

jhoogenboom's avatar
jhoogenboom committed
337
338
339
340
341
342
    if args.infile is not None and args.infile != sys.stdin:
        # Open the specified input file.
        args.infile = open(args.infile, 'r')

    create_visualisation(args.type, args.infile, args.outfile, args.vega,
                         args.online, args.tidy, args.min_abs, args.min_pct,
343
344
345
346
                         args.min_per_strand, args.bias_threshold,
                         args.bar_width, args.padding, args.marker, args.width,
                         args.height, args.log_scale, args.repeat_unit,
                         args.no_alldata, args.title)
jhoogenboom's avatar
jhoogenboom committed
347
#run