bghomraw.py 7.88 KB
Newer Older
jhoogenboom's avatar
jhoogenboom committed
1 2 3 4 5
#!/usr/bin/env python
"""
Compute noise ratios for all noise detected in homozygous reference
samples.

jhoogenboom's avatar
jhoogenboom committed
6 7 8 9
With this tool, separate data points are produced for each sample, which
can be visualised using "fdstools vis bgraw".  Use bghomstats or
bgestimate to compute aggregate statistics on noise instead.
"""
jhoogenboom's avatar
jhoogenboom committed
10
from ..lib import pos_int_arg, add_input_output_args, get_input_output_files,\
11
                  add_allele_detection_args, parse_allelelist,\
jhoogenboom's avatar
jhoogenboom committed
12
                  get_sample_data, add_sequence_format_args
jhoogenboom's avatar
jhoogenboom committed
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44

__version__ = "0.1dev"


# Default values for parameters are specified below.

# Default minimum amount of background to consider, as a percentage of
# the highest allele.
# This value can be overridden by the -m command line option.
_DEF_THRESHOLD_PCT = 0.5

# Default minimum number of reads to consider.
# This value can be overridden by the -n command line option.
_DEF_THRESHOLD_ABS = 5

# Default minimum number of samples for each true allele.
# This value can be overridden by the -s command line option.
_DEF_MIN_SAMPLES = 2

# Default minimum number of samples required for each background product
# to be included in the analysis, as a percentage of the number of
# samples with a certain true allele.
# This value can be overridden by the -S command line option.
_DEF_MIN_SAMPLE_PCT = 80.


def add_sample_data(data, sample_data, sample_alleles, min_pct, min_abs, tag):
    # Check presence of all alleles.
    for marker in sample_alleles:
        allele = sample_alleles[marker]
        if (marker, allele) not in sample_data:
            raise ValueError(
Hoogenboom, Jerry's avatar
Hoogenboom, Jerry committed
45 46
                "Missing allele %s of marker %s in sample %s!" %
                        (allele, marker, tag))
jhoogenboom's avatar
jhoogenboom committed
47 48 49 50 51 52
        elif 0 in sample_data[marker, allele]:
            raise ValueError(
                "Allele %s of marker %s has 0 reads!" % (allele, marker))

    # Enter the read counts into data and check the thresholds.
    for marker, sequence in sample_data:
53
        if marker not in sample_alleles or sequence is False:
jhoogenboom's avatar
jhoogenboom committed
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
            # Sample does not participate in this marker.
            continue
        allele = sample_alleles[marker]
        factors = [100./x for x in sample_data[marker, allele]]
        factors.append(100./sum(sample_data[marker, allele]))
        if (marker, allele) not in data:
            data[marker, allele] = {}
        if sequence not in data[marker, allele]:
            data[marker, allele][sequence] = {
                "tag": [],
                "forward": [],
                "reverse": [],
                "fnoise": [],
                "rnoise": [],
                "tnoise": [],
                "passed_filter": 0}
        data[marker, allele][sequence]["tag"].append(tag)
        data[marker, allele][sequence]["forward"].append(
            sample_data[marker, sequence][0])
        data[marker, allele][sequence]["reverse"].append(
            sample_data[marker, sequence][1])
        data[marker, allele][sequence]["fnoise"].append(
            sample_data[marker, sequence][0] * factors[0])
        data[marker, allele][sequence]["rnoise"].append(
            sample_data[marker, sequence][1] * factors[1])
        data[marker, allele][sequence]["tnoise"].append(
            sum(sample_data[marker, sequence]) * factors[2])
        if sum(count >= min_abs and count*factor >= min_pct
               for count, factor in
               zip(sample_data[marker, sequence], factors[:2])):
            data[marker, allele][sequence]["passed_filter"] += 1
#add_sample_data


def filter_data(data, min_samples, min_sample_pct):
    """
    Remove all alleles from data that have less than min_samples samples
    and remove all data of sequences that don't pass the detection
    thresholds in at least min_sample_pct per cent of the samples with a
    particular allele.
    """
    for marker, allele in data.keys():
        if data[marker, allele][allele]["passed_filter"] < min_samples:
            del data[marker, allele]
            continue
        factor = 100./data[marker, allele][allele]["passed_filter"]
        for sequence in data[marker, allele].keys():
            if (data[marker, allele][sequence]["passed_filter"] * factor <
                    min_sample_pct):
                del data[marker, allele][sequence]
                continue
#filter_data


def compute_ratios(samples_in, outfile, allelefile, annotation_column, min_pct,
                   min_abs, min_samples, min_sample_pct, seqformat, library,
                   marker):

112
    # Parse allele list.
jhoogenboom's avatar
jhoogenboom committed
113 114 115 116 117 118 119 120 121 122 123
    allelelist = {} if allelefile is None \
                    else parse_allelelist(allelefile, seqformat, library)

    # Read sample data.
    data = {}
    get_sample_data(
        samples_in,
        lambda tag, sample_data: add_sample_data(
            data, sample_data,
            {m: allelelist[tag][m].pop() for m in allelelist[tag]},
            min_pct, min_abs, tag),
124
        allelelist, annotation_column, seqformat, library, marker, True,
125
        drop_special_seq=True)
jhoogenboom's avatar
jhoogenboom committed
126 127 128 129 130 131 132 133 134 135 136

    # Ensure minimum number of samples per allele and filter
    # insignificant background products.
    filter_data(data, min_samples, min_sample_pct)

    outfile.write("\t".join(["sample", "marker", "allele", "sequence",
        "forward", "reverse", "total", "fnoise", "rnoise", "tnoise"]) + "\n")
    for marker, allele in data:
        for sequence in data[marker, allele]:
            for i in range(len(data[marker, allele][sequence]["tag"])):
                outfile.write("\t".join([
jhoogenboom's avatar
jhoogenboom committed
137
                    data[marker, allele][sequence]["tag"][i], marker, allele,
jhoogenboom's avatar
jhoogenboom committed
138
                    sequence] + [
139
                    "%.3g" % x if abs(x) > 0.0000000001 else "0" for x in (
jhoogenboom's avatar
jhoogenboom committed
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
                        data[marker, allele][sequence]["forward"][i],
                        data[marker, allele][sequence]["reverse"][i],
                        data[marker, allele][sequence]["forward"][i] +
                        data[marker, allele][sequence]["reverse"][i],
                        data[marker, allele][sequence]["fnoise"][i],
                        data[marker, allele][sequence]["rnoise"][i],
                        data[marker, allele][sequence]["tnoise"][i])]) + "\n")
#compute_ratios


def add_arguments(parser):
    add_input_output_args(parser)
    add_allele_detection_args(parser)
    filtergroup = parser.add_argument_group("filtering options")
    filtergroup.add_argument('-m', '--min-pct', metavar="PCT", type=float,
        default=_DEF_THRESHOLD_PCT,
        help="minimum amount of background to consider, as a percentage "
             "of the highest allele (default: %4.2f)" % _DEF_THRESHOLD_PCT)
    filtergroup.add_argument('-n', '--min-abs', metavar="N", type=pos_int_arg,
        default=_DEF_THRESHOLD_ABS,
        help="minimum amount of background to consider, as an absolute "
             "number of reads (default: %(default)s)")
    filtergroup.add_argument('-s', '--min-samples', metavar="N",
        type=pos_int_arg,
        default=_DEF_MIN_SAMPLES,
        help="require this minimum number of samples for each true allele "
             "(default: %(default)s)")
    filtergroup.add_argument('-S', '--min-sample-pct', metavar="PCT",
        type=float,
        default=_DEF_MIN_SAMPLE_PCT,
        help="require this minimum number of samples for each background "
             "product, as a percentage of the number of samples with a "
             "particular true allele (default: %(default)s)")
    filtergroup.add_argument('-M', '--marker', metavar="MARKER",
        help="work only on MARKER")
Hoogenboom, Jerry's avatar
Hoogenboom, Jerry committed
175
    add_sequence_format_args(parser, "raw")
jhoogenboom's avatar
jhoogenboom committed
176 177 178 179 180 181 182 183 184 185 186 187 188
#add_arguments


def run(args):
    files = get_input_output_files(args)
    if not files:
        raise ValueError("please specify an input file, or pipe in the output "
                         "of another program")
    compute_ratios(files[0], files[1], args.allelelist, args.annotation_column,
                   args.min_pct, args.min_abs, args.min_samples,
                   args.min_sample_pct, args.sequence_format, args.library,
                   args.marker)
#run