usage.rst 4.15 KB
Newer Older
Jeroen F.J. Laros's avatar
Jeroen F.J. Laros committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Usage
=====

The library provides the ``Trie`` class.


Basic operations
----------------

Initialisation of the trie is done via the constructor by providing a list of
words.

.. code:: python

    >>> from dict_trie import Trie
Jeroen F.J. Laros's avatar
Jeroen F.J. Laros committed
16
    >>> 
Jeroen F.J. Laros's avatar
Jeroen F.J. Laros committed
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
    >>> trie = Trie(['abc', 'te', 'test'])

Alternatively, an empty trie can be made to which words can be added with the
``add`` function.

.. code:: python

    >>> trie = Trie()
    >>> trie.add('abc')
    >>> trie.add('te')
    >>> trie.add('test')

Membership can be tested with the ``in`` statement.

.. code:: python

    >>> 'abc' in trie
    True

Test whether a prefix is present by using the ``has_prefix`` function.

.. code:: python

    >>> trie.has_prefix('ab')
    True

Remove a word from the trie with the ``remove`` function. This function returns
``False`` if the word was not in the trie.

.. code:: python

    >>> trie.remove('abc')
    True
    >>> 'abc' in trie
    False
    >>> trie.remove('abc')
    False

Iterate over all words in a trie.

.. code:: python

    >>> list(trie)
    ['abc', 'te', 'test']


Approximate matching
--------------------

A trie can be used to efficiently find a word that is similar to a query word.
This is implemented via a number of functions that search for a word, allowing
a given number of mismatches. These functions are divided in two families, one
using the Hamming distance which only allows substitutions, the other using the
Levenshtein distance which allows substitutions, insertions and deletions.

To find a word that has at most Hamming distance 2 to the word 'abe', the
``hamming`` function is used.

.. code:: python

    >>> trie = Trie(['abc', 'aaa', 'ccc'])
    >>> trie.hamming('abe', 2)
    'aaa'

To get all words that have at most Hamming distance 2 to the word 'abe', the
``all_hamming`` function is used. This function returns a generator.

.. code:: python

    >>> list(trie.all_hamming('abe', 2))
    ['aaa', 'abc']

In order to find a word that is closest to the query word, the ``best_hamming``
function is used. In this case a word with distance 1 is returned.

.. code:: python

    >>> trie.best_hamming('abe', 2)
    'abc'

The functions ``levenshtein``, ``all_levenshtein`` and ``best_levenshtein`` are
used in a similar way.


Other functionalities
---------------------

A trie can be populated with all words of a fixed length over an alphabet by
using the ``fill`` function.

.. code:: python

    >>> trie = Trie()
    >>> trie.fill(('a', 'b'), 2)
    >>> list(trie)
    ['aa', 'ab', 'ba', 'bb']

The trie data structure can be accessed via the ``root`` member variable.

.. code:: python

    >>> trie.root
    {'a': {'a': {'': 1}, 'b': {'': 1}}, 'b': {'a': {'': 1}, 'b': {'': 1}}}
    >>> trie.root.keys()
    ['a', 'b']

The distance functions ``all_hamming`` and ``all_levenshtein`` also have
counterparts that give the developer more information by returning a list of
tuples containing not only the matched word, but also its distance to the query
string and a CIGAR_-like string.

The following encoding is used in the CIGAR-like string:

+-------------+---------------+
| character   | description   |
+-------------+---------------+
| =           | match         |
+-------------+---------------+
| X           | mismatch      |
+-------------+---------------+
| I           | insertion     |
+-------------+---------------+
| D           | deletion      |
+-------------+---------------+

In the following example, we search for all words with Hamming distance 1 to
the word 'acc'. In the results we see a match with the word 'abc' having
distance 1 and a mismatch at position 2.

.. code:: python

    >>> trie = Trie(['abc'])
    >>> list(trie.all_hamming_('acc', 1))
    [('abc', 1, '=X=')]

Similarly, we can search for all words having Levenshtein distance 2 to the
word 'acb'. The word 'abc' matches three times, once by deleting the 'b' on
position 2 and inserting a 'b' after position 3, once by inserting a 'c' after
position 1 and deleting the last character and once by introducing two
mismatches.

.. code:: python

    >>> list(trie.all_levenshtein_('acb', 2))
    [('abc', 2, '=D=I'), ('abc', 2, '=XX'), ('abc', 2, '=I=D')]


.. _CIGAR: https://samtools.github.io/hts-specs/SAMv1.pdf