
Object Oriented Programming

Jonathan K. Vis

Dept. of Human Genetics, Leiden University Medical Center

September 21st, 2017

Jonathan K. Vis (LUMC) Object Oriented Programming September 21st, 2017 1 / 17

Organizing data

• Lists:

vectors_x = [0, 1, 2]

vectors_y = [0, 1, 1]

>>> (vectors_x[2], vectors_y[2])

(2, 1)

• Nested lists:

vectors = [[0, 0], [1, 1], [2, 1]]

>>> vectors[2]

[2, 1]

• Dictionaries:

vectors = [{'x': 0, 'y': 0},

{'x': 1, 'y': 1},

{'x': 2, 'y': 1}]

>>> vectors[2]

{'y': 1, 'x': 2}

Jonathan K. Vis (LUMC) Object Oriented Programming September 21st, 2017 2 / 17

Everything is an object

• Python supports many different kinds of data:

42 3.14159 'Hello World!' [1, 1, 2, 3, 5, 8]

{'name': 'Jack', 'age': 25} True

• every object has:
• a type;
• an internal data representation (primitive or composite);
• a set of procedures (functions) for interaction.

• an object is an instance of a type:
• 42 is an instance of type int;
• 'Hello World!' is an instance of type str.

Jonathan K. Vis (LUMC) Object Oriented Programming September 21st, 2017 3 / 17

Object oriented programming

• create new objects;

• manipulate objects;

• destroy objects:
• explicitly del;
• or just “forget” about them: Python will destroy inaccessible objects in

a process called garbage collection.

Objects are data abstraction:

1. internal data representation using attributes (member variables);

2. an interface (for interaction):
• procedures (member functions);
• defines behaviour, but hides implementation.

Jonathan K. Vis (LUMC) Object Oriented Programming September 21st, 2017 4 / 17

Working with objects

1. creating a class:
• define the class name;
• define the class attributes (member functions).

2. using the class:
• create new instances of a class;
• manipulating these instances.

Jonathan K. Vis (LUMC) Object Oriented Programming September 21st, 2017 5 / 17

Define your own types

Use the keyword class to define a new type:

• with as parent the object type;

• and Vector as name.

class Vector(object):

"""2d vector class."""

def __init__(self, x=0, y=0):

"""Initializes a new 2d vector; default: (0, 0)."""

self.x = x

self.y = y

Jonathan K. Vis (LUMC) Object Oriented Programming September 21st, 2017 6 / 17

More on attributes

Data and procedures (functions) that “belong” to the class:

• Data attributes: the objects that make up the class:
• a 2d vector is made up of two numbers (x and y).

• Methods (procedures):
• functions that only work with this class;
• how to interact with the object;
• e.g., calculate the length of a vector.

self is the current instance of a class.

def __init__(self, ...) is a special method to create new instances
of a class.

Jonathan K. Vis (LUMC) Object Oriented Programming September 21st, 2017 7 / 17

Creating an instance of a class

origin = Vector()

v1 = Vector(2, 1)

print v1.x, origin.y

• don’t provide anything for the self argument; Python does that
automatically;

• use the dot to access an attribute of an instance;

• .x is a member variable.

Jonathan K. Vis (LUMC) Object Oriented Programming September 21st, 2017 8 / 17

Hiding information — separation of concerns

• Sometimes we would like to hide attributes to the outside world, i.e.,
only usable inside the class.

• in Python we prefix an attribute with _ (underscore) to make it
private:

class Vector(object):

def __init__(self, x=0, y=0):

self.x = x

self.y = y

self._secret = 42 # this is allowed

• we agree not to access this attribute directly:

>>> v1 = Vector(1, 2)

>>> print v1._secret # this is forbidden

Jonathan K. Vis (LUMC) Object Oriented Programming September 21st, 2017 9 / 17

Add a method to the Vector class

class Vector(object):

def __init__(self, x=0, y=0):

self.x = x

self.y = y

def distance(self, other):

dx = (self.x - other.x) ** 2

dy = (self.y - other.y) ** 2

return (dx + dy) ** .5

To use the newly created method:

origin.distance(v1)

Jonathan K. Vis (LUMC) Object Oriented Programming September 21st, 2017 10 / 17

Print representation of an object

>>> v1 = Vector(4, 3)

>>> print v1

<__main__.Vector object at 0x7f41ab878450>

• per default uninformative;

• define the special method def __str__(self);

• Python class the __str__ method automatically when using the
print function;

• we are in control of what is printed, e.g., for the vector class:

>>> print v1

<4, 3>

Jonathan K. Vis (LUMC) Object Oriented Programming September 21st, 2017 11 / 17

Own print method

The __str__ function must return a string.

class Vector(object):

def __init__(self, x=0, y=0):

self.x = x

self.y = y

def distance(self, other):

dx = (self.x - other.x) ** 2

dy = (self.y - other.y) ** 2

return (dx + dy) ** .5

def __str__(self):

return '<' + str(self.x) + ', ' + str(self.y) + '>'

Jonathan K. Vis (LUMC) Object Oriented Programming September 21st, 2017 12 / 17

More on types

• get the type of an instance:

>>> v1 = Vector(4, 3)

>>> print type(v1)

<class '__main__.Vector'>

• that also works for the class:

>>> print type(Vector)

<type 'type'>

• use isinstance() to check if an object is a vector:

>>> print isinstance(v1, Vector)

True

• what happens here:

>>> print v1.distance(4)

Jonathan K. Vis (LUMC) Object Oriented Programming September 21st, 2017 13 / 17

Special operators

• define special operators like: +,-,==,<,>,len(),... see:
https://docs.python.org/2/reference/datamodel.html#

basic-customization

• these can be overloaded to work with your class (keep it sensible);

• using the double underscore notation:

__add__(self, other) # self + other

__sub__(self, other) # self - other

__eq__(self, other) # self == other

__lt__(self, other) # self < other

__len__(self) # len(self)

Jonathan K. Vis (LUMC) Object Oriented Programming September 21st, 2017 14 / 17

Example of an overloaded operator

class Vector(object):

...

def __add__(self, other):

return Vector(self.x + other.x, self.y + other.y)

>>> v1 = Vector(1, -6)

>>> v2 = Vector(3, 4.5)

>>> print v1 + v2

<4, -1.5>

Jonathan K. Vis (LUMC) Object Oriented Programming September 21st, 2017 15 / 17

The power of OOP

• Bundle together objects that share:
• common (data) attributes;
• methods that manipulate these attributes.

• Abstract away implementation by specifying interfaces and behaviour;

• Use inheritance (not covered here) to give an even nicer (layered)
abstraction;

• Create own data type on top of what Python provides;

• Reuse code: wrapping code in classes prevents collision of function
names;

• Many libraries heavily use classes.

Questions?

Jonathan K. Vis (LUMC) Object Oriented Programming September 21st, 2017 16 / 17

Assignment

class Fraction(object):

def __init__(self, numerator, denominator=1):

self.numerator = numerator

self.denominator = denominator

Use the skeleton to implement a Fraction type containing two integers:
numerator and denominator.

• add, subtract, e.g., 1
2 + 2

3 = 7
6 ;

• print representation, convert to float;

• invert a fraction;

• . . .

see: https://github.com/lumc-python/oop

or go directly to: https://classroom.github.com/a/8BnbL9fD

Jonathan K. Vis (LUMC) Object Oriented Programming September 21st, 2017 17 / 17

